262 resultados para 6-58
Resumo:
Reaction of five N,N′-bis(aryl)pyridine-2,6-dicarboxamides (H2L-R, where H2 denotes the two acidic protons and R (R = OCH3, CH3, H, Cl and NO2) the para substituent in the aryl fragment) with [Ru(trpy)Cl3](trpy = 2,2′,2″-terpyridine) in refluxing ethanol in the presence of a base (NEt3) affords a group of complexes of the type [RuII(trpy)(L-R)], each of which contains an amide ligand coordinated to the metal center as a dianionic tridentate N,N,N-donor along with a terpyridine ligand. Structure of the [RuII(trpy)(L-Cl)] complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on the [RuII(trpy)(L-R)] complexes shows a Ru(II)–Ru(III) oxidation within 0.16–0.33 V versus SCE. An oxidation of the coordinated amide ligand is also observed within 0.94–1.33 V versus SCE and a reduction of coordinated terpyridine ligand within −1.10 to −1.15 V versus SCE. Constant potential coulometric oxidation of the [RuII(trpy)(L-R)] complexes produces the corresponding [RuIII(trpy)(L-R)]+ complexes, which have been isolated as the perchlorate salts. Structure of the [RuIII(trpy)(L-CH3)]ClO4 complex has been determined by X-ray crystallography. All the Ru(III) complexes are one-electron paramagnetic, and show anisotropic ESR spectra at 77 K and intense LMCT transitions in the visible region. A weak ligand-field band has also been shown by all the [RuIII(trpy)(L-R)]ClO4 complexes near 1600 nm.
Resumo:
Studies on the electrical switching behavior of melt quenched bulk Si15Te85-xSbx glasses have been undertaken in the composition range (1 <= x <= 10), in order to understand the effect of Sb addition on the electrical switching behavior of Si15Te85-x base glass. It has been observed that all the Si15Te85-xSbx glasses studied exhibit a smooth memory type switching. Further, the switching voltages are found to decrease almost linearly with Sb content, which indicates that the metallicity of the dopant plays a dominant role in this system compared to network connectivity/rigidity. The thickness dependence of switching voltage (V-th) indicates a clear thermal origin for the switching mechanism. The temperature variation of switching voltages reveals that the Si15Te85-xSbx glasses studied have a moderate thermal stability. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Phase-singular solid solutions of La0.6Sr0.4Mn1-yMeyO3 (0 <= y <= 0.3) [Me=Li1+, Mg2+, Al3+, Ti4+, Nb5+, Mo6+ or W6+] [LSMey] perovskite of rhombohedral symmetry (space group: R (3) over barc) have been prepared wherein the valence of the diamagnetic substituent at Mn site ranged from 1 to 6. With increasing y-content in LSMey, the metal-insulator (TM-I) transition in resistivity-temperature rho(T) curves shifted to low temperatures. The magnetization studies M(H) as well as the M(T) indicated two groups for LSMey. (1) Group A with Me=Mg, Al, Ti, or Nb which are paramagnetic insulators (PIs) at room temperature with low values of M (< 0.5 mu(B)/Mn); the magnetic transition [ferromagnetic insulator (FMI)-PI] temperature (T-C) shifts to low temperatures and nearly coincides with that of TM-I and the maximum magnetoresistance (MR) of similar to 50% prevails near T-C (approximate to TM-I). (2) Group-B samples with Me=Li, Mo, or W which are FMIs with M-s=3.3-3.58 mu(B)/Mn and marginal reduction in T-C similar to 350 K as compared to the undoped LSMO (T-C similar to 378 K). The latter samples show large temperature differences Delta T=T-c-TM-I, reaching up to similar to 288 K. The maximum MR (similar to 60%) prevails at low temperatures corresponding to the M-I transition TM-I rather than around T-C. High resolution lattice images as well as microscopy analysis revealed the prevalence of inhomogeneous phase mixtures of randomly distributed charge ordered-insulating (COI) bistripes (similar to 3-5 nm width) within FMI charge-disordered regions, yet maintaining crystallographically single phase with no secondary precipitate formation. The averaged ionic radius < r(B)>, valency, or charge/radius ratio < CRR > cannot be correlated with that of large Delta T; hence cannot be used to parametrize the discrepancy between T-C and TM-I. The M-I transition is controlled by the charge conduction within the electronically heterogeneous mixtures (COI bistripes+FMI charge disordered); large MR at TM-I suggests that the spin-ordered FM-insulating regions assist the charge transport, whereas the T-C is associated with the bulk spin ordered regions corresponding to the FMI phase of higher volume fraction of which anchors the T-C to higher temperatures. The present analysis showed that the double-exchange model alone cannot account for the wide bifurcation of the magnetic and electric transitions, contributions from the charge as well as lattice degrees of freedom to be separated from spin/orbital ordering. The heterogeneous phase mixtures (COI+FMI) cannot be treated as of granular composite behavior. (c) 2008 American Institute of Physics.
Resumo:
The structure, bonding and energetics of B2AlHnm (n = 3−6, m = −2 to +1) are compared with corresponding homocyclic boron, aluminum analogues and BAl2Hnm using density functional theory (DFT). Divalent to hexacoordinated boron and aluminum atoms are found in these species. The geometrical and bonding pattern in B2AlH4− is similar to that for B2SiH4. Species with lone pairs on the divalent boron and aluminum atoms are found to be minima on the potential energy surface of B2AlH32−. A dramatic structural diversity is observed in going from B3Hnm to B2AlHnm, BAl2Hnm and Al3Hnm and this is attributable to the preference of lower coordination on aluminum, higher coordination on boron and the higher multicenter bonding capability of boron. The most stable structures of B3H6+, B2AlH5 and BAl2H4− and the trihydrogen bridged structure of Al3H32− show an isostructural relationship, indicating the isolobal analogy between trivalent boron and divalent aluminum anion.
Resumo:
A highly sensitive and specific reverse transcription polymerase chain reaction enzyme linked immunosorbent assay (RT-PCR-ELISA) was developed for the objective detection of nucleoprotein (N) gene of peste des petits ruminants (PPR) virus from field outbreaks or experimentally infected sheep. Two primers (IndF and Np4) and one probe (Sp3) available or designed for the amplification/probing of the 'N' gene of PPR virus, were chosen for labeling and use in RT-PCR-ELISA based on highest analytical sensitivity of detection of infective virus or N-gene containing recombinant plasmid, higher nucleotide homology at the primer binding sites of the 'N' gene sequences available and the ability to amplify PPR viral genome from different sources of samples. RT-PCR was performed with unlabeled IndF and Np4 digoxigenin labeled primers followed by a microplate hybridization probe reaction with biotin labeled Sp3 probe. RT-PCR-ELISA was found to be 10-fold more sensitive than the conventional RT-PCR followed by agarose gel based detection of PCR product. Based on the Mean (mean +/- 3S.D.) optical density (OD) values of 47 RT-PCR negative samples, OD values above 0.306 were considered positive in RT-PCR-ELISA. A total of 82 oculo-nasal swabs and tissue samples from suspected PPR cases were analyzed by RT-PCR and RT-PCR-ELISA, which revealed 54.87 and 58.54% positivity, respectively. From an experimentally infected sheep, both RT-PCR and RT-PCR-ELISA could detect the virus from 6 days post-infection up to 9 days in oculo-nasal swabs. On post-mortem, PPR viral genome was detected in spleen, lymph node, lung, heart and liver. The correlation co-efficient between RT-PCR-ELISA OD values and either TCID50 of virus or molecules of DNA was 0.622 and 0.657, respectively. The advantages of RT-PCR-ELISA over the conventional agarose gel based detection of RT-PCR products are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The supramolecular structures of eight aryl protected ethyl-6-methyl-4-phenyl-2-thioxo-1,2,3,4 tetrahydropyrimidine-5-carboxyl ates were analyzed in order to understand the effect of variations in functional groups on molecular geometry, conformation and packing of molecules in the crystalline lattice. It is observed that the existence of a short intra-molecular C-H center dot center dot center dot pi interaction between the aromatic hydrogen of the aryl ring with the isolated double bond of the six-membered tetrahydropyrimidine ring is a key feature which imparts additional stability to the molecular conformation in the solid state. The compounds pack via the cooperative involvement of both N-H center dot center dot center dot S=C and N-H center dot center dot center dot O=C intermolecular dimers forming a sheet like structure. In addition, weak C-H center dot center dot center dot O and C-H center dot center dot center dot pi intermolecular interactions provide additional stability to the crystal packing.
Resumo:
In the title compound, C30H24Cl2N2O3, the two quinoline ring systems are almost planar [maximum deviations = 0.029 (2) and 0.018 (3) angstrom] and the dihedral angle between them is 4.17 (8)degrees. The dihedral angle between the phenyl ring and its attached quinoline ring is 69.06 (13)degrees. The packing is stabilized by C-H center dot center dot center dot O, C-H center dot center dot center dot N, weak pi-pi stacking [centroid-centroid distances = 3.7985 (16) and 3.7662(17) angstrom] and C-H center dot center dot center dot pi interactions.
Resumo:
The crystal structure determination of three heptapeptides containing alpha-aminoisobutyryl (Aib) residues as a means of helix stabilization provides a high-resolution characterization of 6-->1 hydrogen-bonded conformations, reminiscent of helix-terminating structural features in proteins. The crystal parameters for the three peptides, Boc-Val-Aib-X-Aib-Ala-Aib-Y-OMe, where X and Y are Phe, Leu (I), Leu, Phe (II) and Leu, Leu (III) are: (I) space group P1, Z = 1, a = 9.903 A, b = 10.709 A, c = 11.969 A, alpha = 102.94 degrees, beta = 103.41 degrees, gamma = 92.72 degrees, R = 4.55%; (II) space group P21, Z = 2, a = 10.052 A, b = 17.653 A, c = 13.510 A, beta = 108.45 degrees, R = 4.49%; (III) space group P1, Z = 2 (two independent molecules IIIa and IIIb in the asymmetric unit), a = 10.833 A, b = 13.850 A, c = 16.928 A, alpha = 99.77 degrees, beta = 105.90 degrees, gamma = 90.64 degrees, R = 8.54%. In all cases the helices form 3(10)/alpha-helical (or 3(10)helical) structures, with helical columns formed by head-to-tail hydrogen bonding. The helices assemble in an all-parallel motif in crystals I and III and in an antiparallel motif in II. In the four crystallographically characterized molecules, I, II, IIIa and IIIb, Aib(6) adopts a left-handed helical (hL) conformation with positive phi, psi values, resulting in 6-->1 hydrogen-bond formation between Aib(2) CO and Leu(7)/Phe(7) NH groups. In addition a 4-->1 hydrogen bond is seen between Aib(3) CO and Aib(6) NH groups. This pattern of hydrogen bonding is often observed at the C-terminus of helices proteins, with the terminal pi-type turn being formed by four residues adopting the hRhRhRhL conformation.
Resumo:
The binding of Artocarpus integrifolia lectin (jacalin) to 4-methylumbelliferyl (Meumb)-glycosides, Gal alpha Meumb, Gal beta Meumb, GalNAc alpha Meumb, GalNAc beta-Meumb, and Gal beta 3GalNAc beta Meumb was examined by extrinsic fluorescence quenching titration and stopped flow spectrofluorimetry. The binding was characterized by 100% quenching of fluorescence of Meumb-glycosides. Their association constants range from 2.0 x 10(4) to 1.58 x 10(6) M-1 at 15 degrees C. Entropic contribution is the major stabilizing force for avid binding of Meumb-glycosides indicating the existence of a hydrophobic site that is complementary to their methylumbelliferyl group. The second order association rate constants for interaction of these sugars with lectin at 15 degrees C vary from 8.8 x 10(5) to 3.24 x 10(6) M-1 S-1, at pH 7.2. The first order dissociation rate constants range from 2.30 to 43.0 S-1 at 15 degrees C. Despite the differences in their association rate constants, the overall values of association constants for these saccharides are determined by their dissociation rate constants. The second order rate constant for the association of Meumb-glycosides follows a pattern consistent with the magnitude of the activation energies involved therin. Activation parameters for association of all ligands illustrate that the origin of the barrier between binding of jacalin to Meumb-glycosides is entropic, and the enthalpic contribution is small. A correlation between these parameters and the structure of the ligands on the association rates underscores the importance of steric factors in determining protein saccharide recognitions.
Resumo:
Sr2FeMoO6 double perovskits display low field MR at a relatively high temperature and unusual ferromagnetic properties. These compounds depicts metal to insulator transition increasing x above x(c) similar to 0.25. A comparative analysis of the near edge regions (XANES) suggests that iron is Fe3+ in the metallic range. Checking the end compounds, we found that the doped samples can be viewn as inhomogeneous distributions of the end compounds. This could help to distinguish between the two scenarios proposed to explain the metal to insulator transition. Moreover, the local atomic structure of Sr2FeMoxW1-xO6 as a function of composition (0 <= x <= 1) has been investigated by Extended X-ray absorption spectroscopy (EXAFS) a the Fe, Mo, Sr K-edges andW L-III-edge.
Resumo:
The synthesis of the title compound is described and results of some experiments on the degradation of patchouli alcohol are reported.
Resumo:
3-Methyl-4-carboxy-2-(2′-methoxy-6′-naphthyl)cyclopenten-3-acetic acid, prepared from trans methyl 2-methyl-3-carbomethoxycyclopentanon-2-acetate and 2-methoxy-6-lithionaphthalene, on ring closure and catalytic hydrogenation gave dl-3-methoxy-17β-carboxy-1,3,5(10),6,8-estrapentaene.