282 resultados para 2-ELECTRON TRANSITIONS
Resumo:
An alternative pulse scheme which simplifies and improves the recently proposed P.E.COSY experiment is suggested for the retention of connected or unconnected transitions in a coupled spin system. An important feature of the proposed pulse scheme is the improved phase characteristics of the diagonal peaks. A comparison of various experiments designed for this purpose, namely COSY-45, E.COSY, P.E.COSY and the present scheme (A.E.COSY), is also presented. The suppression of unconnected transitions and the measurement of scalar coupling constants and their relative signs are illustrated from A.E.COSY spectra of 2,3-dibromopropionic acid and 2-(2-thienyl)pyridine.
Resumo:
In some bimolecular diffusion-controlled electron transfer (ET) reactions such as ion recombination (IR), both solvent polarization relaxation and the mutual diffusion of the reacting ion pair may determine the rate and even the yield of the reaction. However, a full treatment with these two reaction coordinates is a challenging task and has been left mostly unsolved. In this work, we address this problem by developing a dynamic theory by combining the ideas from ET reaction literature and barrierless chemical reactions. Two-dimensional coupled Smoluchowski equations are employed to compute the time evolution of joint probability distribution for the reactant (P-(1)(X,R,t)) and the product (p((2))(X,R,t)), where X, as is usual in ET reactions, describes the solvent polarization coordinate and R is the distance between the reacting ion pair. The reaction is described by a reaction line (sink) which is a function of X and R obtained by imposing a condition of equal energy on the initial and final states of a reacting ion pair. The resulting two-dimensional coupled equations of motion have been solved numerically using an alternate direction implicit (ADI) scheme (Peaceman and Rachford, J. Soc. Ind. Appl. Math. 1955, 3, 28). The results reveal interesting interplay between polarization relaxation and translational dynamics. The following new results have been obtained. (i) For solvents with slow longitudinal polarization relaxation, the escape probability decreases drastically as the polarization relaxation time increases. We attribute this to caging by polarization of the surrounding solvent, As expected, for the solvents having fast polarization relaxation, the escape probability is independent of the polarization relaxation time. (ii) In the slow relaxation limit, there is a significant dependence of escape probability and average rate on the initial solvent polarization, again displaying the effects of polarization caging. Escape probability increases, and the average rate decreases on increasing the initial polarization. Again, in the fast polarization relaxation limit, there is no effect of initial polarization on the escape probability and the average rate of IR. (iii) For normal and barrierless regions the dependence of escape probability and the rate of IR on initial polarization is stronger than in the inverted region. (iv) Because of the involvement of dynamics along R coordinate, the asymmetrical parabolic (that is, non-Marcus) energy gap dependence of the rate is observed.
Resumo:
The electron paramagnetic resonance (EPR) of ternary oxides of Cu(II) has been studied between 4.2 and 300 K. The systems include those with 180 degrees Cu-O-Cu interactions (such as Ln2CuO4, Sr2CuO2Cl2, Sr2CuO3 and Ca2CuO3) or 90 degrees Cu-O-Cu interactions (such as Y2Cu2O5 or BaCuO2) as well as those in which the Cu2+ ions are isolated (such as Y2BaCuO5, La1.8Ba1.2Cu0.9O4.8 and Bi2CuO4). The change in the EPR susceptibility as a function of temperature is compared with that of the DC magnetic susceptibility. Compounds with extended 180 degrees Cu-O-Cu interactions which have a low susceptibility also do not give EPR signals below room temperature. For compounds such as Ca2CuO3 with one-dimensional 180 degrees Cu-O-Cu interactions a weak EPR signal is found the temperature dependence of which is very different from that of the DC susceptibility. For Y2BaCuO5 as well as for La1.8Ba1.2Cu0.9O4.8 the EPR susceptibility as well as its temperature variation are comparable with those of the static susceptibility near room temperature but very different at low temperatures. Bi2CuO4 also shows a similar behaviour. In contrast, for Y2Cu2O5, in which the copper ions have a very distorted nonsquare-planar configuration, the EPR and the static susceptibility show very similar temperature dependences. In general, compounds in which the copper ions have a square-planar geometry give no EPR signal in the ground state (0 K) while those with a distortion from square-planar geometry do give a signal. The results are analysed in the light of recent MS Xalpha calculations on CuO46- square-planar clusters with various Cu-O distances as well as distortions. It is suggested that in square-planar geometry the ground state has an unpaired electron in anionic orbitals which is EPR inactive. Competing interactions from other cations, an increase in Cu-O distance or distortions from square-planar geometry stabilise another state which has considerably more Cu 3d character. These states are EPR active. Both these states, however, are magnetic. For isolated CuO46- clusters the magnetic interactions seem to involve only the states which have mainly anionic character.
Resumo:
By inflating basic rhombuses, with a self-similarity principle, non-periodic tiling of 2-d planes is possible with 4, 5, 6, 7, 8, … -fold symmetries. As examples, non-periodic tilings with crystallographically allowed 4-fold symmetry and crystallographically forbidden 7-fold symmetry are presented in detail. The computed diffraction patterns of these tilings are also discussed.
Resumo:
We propose an excitonic mechanism for high temperature superconductivity in YBa2Cu3O7. We feel that in this material, nature has provided a very elegant system, closely simulated by the model proposed by Allender, Bray and Bardeen1 using Ginzburg's ideas.2 In this system the excitonic layer and the conduction electron layers are indeed atomic planes making contacts on atomic level, an ideal version of the situation envisaged by Allender et al. Further, since these layers are physically separated, the question of screening of charges is avoided.
Resumo:
2,4-Dichlorophenol hydroxylase, a flavoprotein monooxygenase from Pseudomonas cepacia grown on 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole source of carbon, was purified to homogeneity by a single-step affinity chromatography on 2,4-DCP-Sepharose CL-4B. The enzyme was eluted from the affinity matrix with the substrate 2,4-dichlorophenol. The enzyme has a molecular weight of 275,000 consisting of four identical subunits of molecular weight 69,000 and requires exogenous addition of FAD for its complete catalytic activity. The enzyme required an external electron donor NADPH for hydroxylation of 2,4-dichlorophenol to 3,5-dicholorocatechol. NADPH was preferred over NADH. The enzyme had Km value of 14 μImage for 2,4-dichlorophenol, and 100 μImage for NADPH. The enzyme activity was significantly inhibited by heavy metal ions like Hg2+ and Zn2+ and showed marked inhibition with thiol reagents. Trichlorophenols inhibited the enzyme competitively. The hydroxylase activity decreased as a function of increasing concentrations of Cibacron blue and Procion red dyes. The apoenzyme prepared showed complete loss of FAD when monitored spectrophotometrically and had no enzymatic activity. The inactive apoenzyme was reconstituted with exogenous FAD which completely restored the enzyme activity.
Resumo:
The nature of the chemisorbed states of nitrogen on various transition metal surfaces is discussed comprehensively on the basis of the results of electron spectroscopic investigations augmented by those from other techniques such as LEED and thermal desorption. A brief discussion of the photoemission spectra of free N2, a comparison of adsorbed N2 and CO as well as of physisorption of N2 on metal surfaces is also presented. We discuss the chemisorption of N2 on the surfaces of certain metals (e.g. Ni, Fe, Ru and W) in some detail, paying considerable attention to the effect of electropositive and electronegative surface modifiers. Features of the various chemisorbed states (one or more weakly chemisorbed gamma-states, strongly chemisorbed alpha-states with bond orders between 1 and 2. and dissociative chemisorbed beta-states) on different surfaces are described and relations between them indicated. While the gamma-state could be a precursor of the alpha-state, the alpha-state could be the precursor of the beta-state and this kind of information is of direct relevance to ammonia synthesis. The nature of adsorption of N2 on the surfaces of some metals (e.g. Cr, Co) deserves further study and such investigations might as well suggest alternative catalysts for ammonia synthesis.
Resumo:
The diruthenium(III) complex [Ru2O(O2CAr)2(MeCN)4(PPh3)2](ClO4)2 (1), on reaction with 1,2-diaminoethane (en) in MeOH at 25-degrees-C, undergoes nucleophilic attacks at the carbon of two facial MeCN ligands to form [(Ru2O)-O-III(O2CAr)2-{NH2CH2CH2NHC(Me)NH}2(PPh3)2](ClO4)2 (2) (Ar = C6H4-p-X, X = H, Me, OMe, Cl) containing two seven-membered amino-amidine chelating ligands. The molecular structure of 2 with Ar = C6H4-p-OMe was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.942 (5) angstrom, b = 14.528 (2) angstrom, c = 21.758 (6) angstrom, alpha = 109.50 (2)-degrees, beta = 92.52 (3)-degrees, gamma = 112.61 (2)-degrees, V = 3759 (2) angstrom 3, and Z = 2. The complex has an {Ru2(mu-O)(mu-O2CAr2)2(2+)} core. The Ru-Ru and average Ru-O(oxo) distances and the Ru-O-Ru angle are 3.280 (2) angstrom, 1.887 [8] angstrom, and 120.7 (4)-degrees, respectively. The amino group of the chelating ligand is trans to the mu-oxo ligand. The nucleophilic attacks take place on the MeCN ligands cis to the mu-oxo ligand. The visible spectra of 2 in CHCl3 display an absorption band at 565 nm. The H-1 NMR spectra of 2 in CDCl3 are indicative of the formation of an amino-amidine ligand. Complex 2 exhibits metal-centered quasireversible one-electron oxidation and reduction processes in the potential ranges +0.9 to +1.0 V and -0.3 to -0.5 V (vs SCE), respectively, involving the Ru(III)2/Ru(III)Ru(IV) and Ru(III)2/Ru(II)Ru(III) redox couples in CH2Cl2 containing 0.1 M TBAP. The mechanistic aspects of the nucleophilic reaction are discussed.
Resumo:
A numerical solution for the transient temperature distribution in a cylindrical disc heated on its top surface by a circular source is presented. A finite difference form of the governing equations is solved by the Alternating Direction Implicit (ADI) time marching scheme. This solution has direct applications in analyzing transient electron beam heating of target materials as encountered in the prebreakdown current enhancement and consequent breakdown in high voltage vacuum gaps stressed by alternating and pulsed voltages. The solution provides an estimate of the temperature for pulsed electron beam heating and the size of thermally activated microparticles originating from anode hot spots. The calculated results for a typical 45kV (a.c.) electron beam of radius 2.5 micron indicate that the temperature of such spots can reach melting point and could give rise to microparticles which could initiate breakdown.
Resumo:
By the reaction of Ru2Cl(O2CAr)4 (1) and PPh3 in MeCN-H2O the diruthenium(II,III) and diruthenium(II) compounds of the type Ru2(OH2)Cl(MeCN)(O2CAr)4(PPh3)2 (2) and Ru2(OH2)(MeCN)2(O2CAr)4(PPh3)2 (3) were prepared and characterized by analytical, spectral, and electrochemical data (Ar is an aryl group, C6H4-p-X; X = H, OMe, Me, Cl, NO2). The molecular structure of Ru2(OH2)Cl(MeCN)(O2CC6H4-p-OMe)4(PPh3)2 was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.538 (5) angstrom, b = 15.650 (4) angstrom, c = 18.287 (7) angstrom, alpha = 101.39 (3)-degrees, beta = 105.99 (4)-degrees, gamma = 97.94 (3)-degrees, V = 3574 angstrom 3, Z = 2. The molecule is asymmetric, and the two ruthenium centers are clearly distinguishable. The Ru(III)-Ru(II), Ru(III)-(mu-OH2), and Ru(II)-(mu-OH2) distances and the Ru-(mu-OH2)-Ru angle in [{Ru(III)Cl(eta-1-O2CC6H4-p-OMe)(PPh3)}(mu-OH2)(mu-O2CC6H4-p-OMe)2{Ru(II)(MeCN)(eta-1-O2CC6H4-p-OMe)(PPh3)}] are 3.604 (1), 2.127 (8), and 2.141 (10) angstrom and 115.2 (5)-degrees, respectively. The compounds are paramagnetic and exhibit axial EPR spectra in the polycrystalline form. An intervalence transfer (IT) transition is observed in the range 900-960 nm in chloroform in these class II type trapped mixed-valence species 2. Compound 2 displays metal-centered one-electron reduction and oxidation processes near -0.4 and +0.6 V (vs SCE), respectively in CH2Cl2-TBAP. Compound 2 is unstable in solution phase and disproportionates to (mu-aquo)diruthenium(II) and (mu-oxo)diruthenium(III) complexes. The mechanistic aspects of the core conversion are discussed. The molecular structure of a diruthenium(II) compound, Ru2(OH2)(MeCN)2(O2CC6H4-p-NO2)4(PPh3)2.1.5CH2Cl2, was obtained by X-ray crystallography. The compound crystallizes in the space group P2(1)/c with a = 23.472 (6) angstrom, b = 14.303 (3) angstrom, c = 23.256 (7) angstrom, beta = 101.69 (2)-degrees, V = 7645 angstrom 3, and Z = 4. The Ru(II)-Ru(II) and two Ru(II)-(mu-OH2) distances and the Ru(II)-(mu-OH2)-Ru(II) angle in [{(PPh3)-(MeCN)(eta-1-O2CC6H4-p-NO2)Ru}2(mu-OH2)(mu-O2CC6H4-p-NO2)2] are 3.712 (1), 2.173 (9), and 2.162 (9) angstrom and 117.8 (4)-degrees, respectively. In both diruthenium(II,III) and diruthenium(II) compounds, each metal center has three facial ligands of varying pi-acidity and the aquo bridges are strongly hydrogen bonded with the eta-1-carboxylato facial ligands. The diruthenium(II) compounds are diamagnetic and exhibit characteristic H-1 NMR spectra in CDCl3. These compounds display two metal-centered one-electron oxidations near +0.3 and +1.0 V (vs SCE) in CH2Cl2-TBAP. The overall reaction between 1 and PPh3 in MeCN-H2O through the intermediacy of 2 is of the disproportionation type. The significant role of facial as well as bridging ligands in stabilizing the core structures is observed from electrochemical studies.
Resumo:
X-ray and ultraviolet photoelectron spectroscopy have been employed to investigate the high temperature metal-insulator transitions in V2O3 and (V0.99Cr0.01)2O3. The high temperature transitions are associated with more gradual changes in the 3d bands compared to the low-temperature transitions
Resumo:
The α→γ→α→β transitions of para-dichlorobenzene have been studied by employing infrared and n.q.r. spectroscopy as well as differential scanning calorimetry. The γ phase is associated with considerably higher values of some of the intramolecular vibration frequencies. The α→γ transition shows athermal nucleation behaviour as in martensitic transitions. Intermolecular vibration bands around 46 and 85 cm–1 present in γ and α phases disappear in the β phase. The α→β transition seems to be associated with some orientational disorder.
Resumo:
Mössbauer and electrical resistivity measurements on Eu1–xSrxFeO3(0.0 < x[less-than-or-eq] 0.4) show the presence of a time-averaged electron configuration of Fe in these solids at T > TN. Variable range hopping arising from Anderson localization seems to occur at T < TN indicating that the electron hopping time in this regime is likely to be greater than 10–7 s. Mössbauer studies on Nd1–xSrxCoO3 show that in the Anderson localization regime, the hopping time is greater than 10–7 s in this system as well.
Resumo:
Supercritical carbon dioxide is used to prepare aerogels of two reference molecular organogelators, 2,3-bis-n-decyloxyanthracene (DDOA) (luminescent molecule) and 12-hydroxystearic acid (HSA). Electron microscopy reveals the fibrillar morphology of the aggregates generated by the protocol. SAXS and SANS measurements show that DDOA aerogels are crystalline materials exhibiting three morphs: (1) arrangements of the crystalline solid (2D p6m), (2) a second hexagonal morph slightly more compact, and (3) a packing specific of the fibers in the gel. Aggregates specific of the aerogel (volume fraction being typically phi approximate to 0.60) are developed over larger distances (similar to 1000 angstrom) and bear fewer defaults and residual strains than aggregates in the crystalline and gel phases. Porod, Scherrer and Debye-Bueche analyses of the scattering data have been performed. The first five diffraction peaks show small variations in position and intensity assigned to the variation of the number of fibers and their degree of vicinity within hexagonal bundles of the related SAFIN according to the Oster model. Conclusions are supported by the guidelines offered by the analysis of the situation in HSA aerogels for which the diffraction pattern can be described by two coexisting lamellar-like arrangements. The porosity of the aerogel, as measured by its specific surface extracted from the scattering invariant analysis, is only 1.8 times less than that of the swollen gel and is characteristic of a very porous material.