132 resultados para |Hormone concentration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of musth, a period of elevated levels of androgens and heightened sexual activity, has been well documented for the male Asian elephant (Elephas maximus). However, the relationship between androgen-dependent musth and adrenocortical function in this species is unclear. The current study is the first assessment of testicular and adrenocortical function in free-ranging male Asian elephants by measuring levels of testosterone (androgen) and cortisol (glucocorticoid - a physiological indicator of stress) metabolites in faeces. During musth, males expectedly showed significant elevation in faecal testosterone metabolite levels. Interestingly, glucocorticoid metabolite concentrations remained unchanged between musth and non-musth periods. This observation is contrary to that observed with wild and captive African elephant bulls and captive Asian bull elephants. Our results show that musth may not necessarily represent a stressful condition in free-ranging male Asian elephants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The localization and dispersion quality of as received NH2 terminated multiwall carbon nanotubes (MWNT-I) and ethylene diamine (EDA) functionalized MWNTs in melt mixed blends of polycarbonate ( PC) and poly(styrene-co-acrylonitrile) (SAN) were assessed in this study using rheo-electrical and electromagnetic interference (EMI) shielding measurements. In order to improve the dispersion quality and also to selectively localize MWNTs in the PC phase of the blends, EDA was grafted onto MWNTs by two different strategies like diazonium reaction of the para-substituted benzene ring of MWNTs with EDA ( referred to as MWNT-II) and acylation of carboxyl functionalized MWNTs with thionyl chloride ( referred to as MWNT-III). By this approach we could systematically vary the concentration of NH2 functional groups on the surface of MWNTs at a fixed concentration (1 wt%) in PC/SAN blends. XPS was carried to evaluate the % concentration of N in different MWNTs and was observed to be highest for MWNT-III manifesting in a large surface coverage of EDA on the surface of MWNTs. Viscoelastic properties and melt electrical conductivities were measured to assess the dispersion quality of MWNTs using a rheo-electrical set-up both in the quiescent as well as under steady shear conditions. Rheological properties revealed chain scission of PC in the presence of MWNT-III which is due to specific interactions between EDA and PC leading to smaller PC grafts on the surface of MWNTs. The observed viscoelastic properties in the blends were further correlated with the phase morphologies under quiescent and annealed conditions. Electromagnetic interference (EMI) shielding effectiveness in X and K-u-band frequencies were measured to explore these composites for EMI shielding applications. Interestingly, MWNT-II showed the highest electrical conductivity and EMI shielding in the blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater contamination is a serious concern in India. Major geogenic contaminants include fluoride, arsenic and iron, while common anthropogenic contaminants include nitrate, metals, organics and microbial contamination. Besides, known point and diffuse sources, groundwater c ontamination from inf iltration of pit to ilet leachate is an emerging concern. The study area of this paper is Kolar district in Karnataka that is hot spot of fluoride contamination. The absence of fluoride contamination in Mulbagal town and the alterations in groundwater chemistry from infiltration of pit toilet leachate motivated the author to examine the possible linkages between anthropogenic contamination and fluoride concentration in groundwater of Mulbagal town. Analysis of the groundwater chemistry revealed that the groundwater in Mulbagal town is under saturated with respect to calcite that suppresses the dissolution of fluorite and the fluoride concentration in the groundwater. The slightly acidic pH of the groundwater is considered responsible to facilitate calcite dissolution under saturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iodothyronine deiodinases (IDs) are mammalian selenoenzymes that play an important role in the activation and inactivation pound of thyroid hormones. It is known that iodothyronamines (TnAMs), produced by the decarboxylation of thyroid hormones, act as substrates for deiodinases. To understand whether decarboxylation alters the rate and/or regioselectivity of deiodination by using synthetic deiodinase mimics, we studied the deiodination of different iodothyronamines. The triiodo derivative 3,3',5-triiodothyronamine (T3AM) is deiodinated at the inner ring by naphthyl-based deiodinase mimics, which is similar to the deiodination of 3,3',5-triiodothyronine (T3). However, T3AM under-goes much slower deiodination than T3. Detailed experimental and theoretical investigations suggest that T3AM forms a weaker halogen bond with selenium donors than T3. Kinetic studies and single-crystal X-ray structures of T3 and T3AM reveal that intermolecular I center dot center dot center dot I interactions may play an important role in deiodination. The formation of hydrogen- and halogen-bonding assemblies, which leads to the formation of a dimeric species of T3 in solution, facilitates the interactions between the selenium and iodine atoms. In contrast, T3AM, which does not have I center dot center dot I interactions, undergoes much slower deiodination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles (AgNPs) pose a high risk of exposure to the natural environment owing to their extensive usage in various consumer products. In the present study we attempted to understand the harmful effect of AgNPs at environmentally relevant low concentration levels (<= 1 ppm) towards two different freshwater bacterial isolates and their consortium. The standard plate count assay suggested that the AgNPs were toxic towards the fresh water bacterial isolates as well as the consortium, though toxicity was significantly reduced for the cells in the consortium. The oxidative stress assessment and membrane permeability studies corroborated with the toxicity data. The detailed electron microscopic studies suggested the cell degrading potential of the AgNPs, and the FT-IR studies confirmed the involvement of the surface groups in the toxic effects. No significant ion leaching from the AgNPs was observed at the applied concentration levels signifying the dominant role of the particle size, and size distribution in bacterial toxicity. The reduced toxicity for the cells in the consortium than the individual isolates has major significance in further studies on the ecotoxicity of the AgNPs. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In present work, a systematic study has been carried out to understand the influence of source concentration on structural and optical properties of the SnO2 nanoparticles. SnO2 nanoparticles have been prepared by using chemical precipitation method at room temperature with aqueous ammonia as a stabilizing agent. X-ray diffraction analysis reveals that SnO2 nanoparticles exhibit tetragonal structure and the particle size is in range of 4.9-7.6 nm. High resolution transmission electron microscopic image shows that all the particles are nearly spherical in nature and particle size lies in range of 4.6-7 nm. Compositional analysis indicates the presence of Sn and O in samples. Blue shift has been observed in optical absorption spectra due to quantum confinement and the bandgap is in range of 4-4.16 eV. The origin of photoluminescence in SnO2 is found to be due to recombination of electrons in singly occupied oxygen vacancies with photo-excited holes in valance band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The static and dynamic pressure concentration isotherms (PCIs) of MmNi(5-x)Al(x). (x = 0, 0.3, 0.5 and 0.8) hydrides were measured at different temperatures using volumetric method. The effect of Al substitution on PCI and thermodynamic properties were studied. The plateau pressure and maximum hydrogen storage capacity decreased with Al content whereas reaction enthalpy increased. The plateau pressure, plateau slope and hysteresis effect was observed more for dynamic PCIs compared to static PCIs. Different mathematical models used for metal hydride-based thermodynamic devices simulation are compared to select suitable model for static and dynamic PCI simulation of MmNi(5)-based hydrides. Few important physical coefficients (partial molar volume, reaction enthalpy, reaction entropy, etc.) useful for development of thermodynamic devices were estimated. A relation has been proposed to correlate aluminium content and physical coefficients for the prediction of unknown PCI. The simulated and experimental PCIs were found matching closely for both static and dynamic conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Callithrix jacchus (common marmoset) is a New World primate monkey, used as an animal model in biomedical research. Marmoset-specific follicle-stimulating hormone (FSH) preparation is required to improve superovulation protocols and to develop homologous FSH monitoring assays in these monkeys. In this study, we document the large-scale expression of recombinant marmoset FSH in methylotropic yeast, Pichia pastoris. The recombinant preparation was found to be immunologically active in Western blotting and radioimmunoassay. The preparation displayed receptor binding ability in radioreceptor assay. Based on the receptor binding ability, the yield of fermentation was estimated to be 7.2 mg/L. FSH-induced cAMP assay and estradiol assay revealed that the recombinant hormone is able to induce signal transduction. Both immunological and in vitro biological activity of marmoset FSH was found to be comparable to purified human pituitary FSH, which served as reference hormone for these assays. Thus, the study suggests that a Pichia expression system can be used for large-scale expression of bioactive recombinant marmoset FSH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary atomization characteristics of burning bicomponent (ethanol-water) droplets containing titania nanoparticles (NPs) in dilute (0.5% and 1 wt.%) and dense concentrations (5% and 7.5 wt.%) are studied experimentally at atmospheric pressure under normal gravity. It is observed that both types of nanofuel droplets undergo distinct modes of secondary breakup, which are primarily responsible for transporting particles from the droplet domain to the flame zone. For dilute nanosuspensions, disruptive response is characterized by low intensity atomization modes that cause small-scale localized flame distortion. In contrast, the disruption behavior at dense concentrations is governed by high intensity bubble ejections, which result in severe disruption of the flame envelope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study deals with the diffusion and phase transition behaviour of paraffin reinforced with carbon nano-additives namely graphene oxide (GO) and surface functionalized single walled carbon nanotubes (SWCNT). Bulk disordered systems of paraffin hydrocarbons impregnated with carbon nano-additives have been generated in realistic equilibrium conformations for potential application as latent heat storage systems. Ab initio molecular dynamics(MD) in conjugation with COMPASS forcefield has been implemented using periodic boundary conditions. The proposed scheme allows determination of optimum nano-additive loading for improving thermo-physical properties through analysis of mass, thermal and transport properties; and assists in determination of composite behaviour and related performance from microscopic point of view. It was observed that nanocomposites containing 7.8% surface functionalised SWCNT and 55% GO loading corresponds to best latent heat storage system. The propounded methodology could serve as a by-pass route for economically taxing and iterative experimental procedures required to attain the optimum composition for best performance. The results also hint at the large unexplored potential of ab-initio classical MD techniques for predicting performance of new nanocomposites for potential phase change material applications. (C) 2015 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buffer leakage is an important parasitic loss mechanism in AlGaN/GaN high electron mobility transistors (HEMTs) and hence various methods are employed to grow semi-insulating buffer layers. Quantification of carrier concentration in such buffers using conventional capacitance based profiling techniques is challenging due to their fully depleted nature even at zero bias voltages. We provide a simple and effective model to extract carrier concentrations in fully depleted GaN films using capacitance-voltage (C-V) measurements. Extensive mercury probe C-V profiling has been performed on GaN films of differing thicknesses and doping levels in order to validate this model. Carrier concentrations as extracted from both the conventional C-V technique for partially depleted films having the same doping concentration, and Hall measurements show excellent agreement with those predicted by the proposed model thus establishing the utility of this technique. This model can be readily extended to estimate background carrier concentrations from the depletion region capacitances of HEMT structures and fully depleted films of any class of semiconductor materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unique strategy was adopted to achieve an ultra-low electrical percolation threshold of multiwall carbon nanotubes (MWNTs) (0.25 wt%) in a classical partially miscible blend of poly-alpha-methylstyrene-co-acrylonitrile and poly(methyl methacrylate) (P alpha MSAN/PMMA), with a lower critical solution temperature. The polymer blend nanocomposite was prepared by standard melt-mixing followed by annealing above the phase separation temperature. In a two-step mixing protocol, MWNTs were initially melt-mixed with a random PS-r-PMMA copolymer and subsequently diluted with 85/15 P alpha MSAN/PMMA blends in the next mixing step. Mediated by the PS-r-PMMA, the MWNTs were mostly localized at the interface and bridged the PMMA droplets. This strategy led to enhanced electromagnetic interference (EMI) shielding effectiveness at 0.25 wt% MWNTs through multiple scattering from MWNT-covered droplets, as compared to the blends without the copolymer, which were transparent to electromagnetic radiation.