116 resultados para white pine variation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Balanced white light emitting systems are important for applications in electronic devices. Of all types of white light emitting materials, gels have the special advantage of easy processability. Here we report two white light emitting gels, which are based on lanthanide cholate self-assembly. The components are commercially available and the gels are prepared by simply sonicating their aqueous solutions (1-3min), unlike any other known white light emitting systems. Their CIE co-ordinates, calculated from the luminescence data, fall in the white light range with a correlated color temperature of ca. 5600 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal in the whisper activity detection (WAD) is to find the whispered speech segments in a given noisy recording of whispered speech. Since whispering lacks the periodic glottal excitation, it resembles an unvoiced speech. This noise-like nature of the whispered speech makes WAD a more challenging task compared to a typical voice activity detection (VAD) problem. In this paper, we propose a feature based on the long term variation of the logarithm of the short-time sub-band signal energy for WAD. We also propose an automatic sub-band selection algorithm to maximally discriminate noisy whisper from noise. Experiments with eight noise types in four different signal-to-noise ratio (SNR) conditions show that, for most of the noises, the performance of the proposed WAD scheme is significantly better than that of the existing VAD schemes and whisper detection schemes when used for WAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation of normalized electrical resistivity in the system of glasses Ge15Te85-xSnx with (1 <= x <= 5) has been studied as a function of high pressure for pressures up to 9.5 GPa. It is found that with the increase in pressure, the resistivity decreases initially and shows an abrupt fall at a particular pressure, indicating the phase transition from semiconductor to near metallic at these pressures, which lie in the range 1.5-2.5 GPa, and then continues being metallic up to 9.5 GPa. This transition pressure is seen to decrease with the increase in the percentage content of tin due to increasing metallicity of tin. The semiconductor to near metallic transition is exactly reversible and may have its origin in a reduction of the band gap due to high pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eu3+-activated BaMoO4 phosphors were synthesized by the nitrate citrate gel combustion method. The Rietveld refinement analysis confirmed that all the compounds were crystallized in the scheelite-type tetragonal structure with I4(1)/a (No. 88) space group. Photoluminescence (PL) spectra of BaMoO4 phosphor reveals broad emission peaks at 465 and 605 nm, whereas the Eu3+-activated BaMoO4 phosphors show intense 615 nm (D-5(0) -> F-7(2)) emission peak. Judd-Ofelt theory was applied to evaluate the intensity parameters (Omega(2), Omega(4)) of Eu3+-activated BaMoO4 phosphors. The transition probabilities (A(T)), radiative lifetime (tau(rad)), branching ratio (beta), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau(rad)) were investigated by using the intensity parameters. CIE color coordinates confirmed that the BaMoO4 and Eu3+-activated BaMoO4 phosphors exhibit white and red luminescence, respectively. The obtained results revealed that the present phosphors can be a potential candidate for red lasers and white LEDs applications. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we extend the exploration of significantly super-Chandrasekhar magnetized white dwarfs by numerically computing axisymmetric stationary equilibria of differentially rotating magnetized polytropic compact stars in general relativity (GR), within the ideal magnetohydrodynamic regime. We use a general relativistic magnetohydrodynamic (GRMHD) framework that describes rotating and magnetized axisymmetric white dwarfs, choosing appropriate rotation laws and magnetic field profiles (toroidal and poloidal). The numerical procedure for finding solutions in this framework uses the 3 + 1 formalism of numerical relativity, implemented in the open source XNS code. We construct equilibrium sequences by varying different physical quantities in turn, and highlight the plausible existence of super-Chandrasekhar white dwarfs, with masses in the range of 2-3 solar mass, with central (deep interior) magnetic fields of the order of 10(14) G and differential rotation with surface time periods of about 1-10 s. We note that such white dwarfs are candidates for the progenitors of peculiar, overluminous Type Ia supernovae, to which observational evidence ascribes mass in the range 2.1-2.8 solar mass. We also present some interesting results related to the structure of such white dwarfs, especially the existence of polar hollows in special cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and Cr (3% and 5%) doped CdS nanoparticles were synthesized by chemical co-precipitation method. The synthesized nanocrystalline particles are characterized by energy dispersive X-ray analysis (EDAX), scanning electron microscope (SEM), X-ray Diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), Electron paramagnetic resonance (EPR), vibrating sample magnetometer (VSM) and Raman spectroscopy. XRD studies indicate that Cr doping in host CdS result a structural change from Cubic phase to mixed (cubic + hexagonal) phase. Due to quantum confinement effect, widening of the band gap is observed for undoped and Cr doped CdS nanoparticles compared to bulk CdS. The average particle size calculated from band gap values is in good agreement with the TEM study calculation and it is around 4-5 nm. A strong violet emission band consisting of two emission peaks is observed for undoped CdS nanoparticles, whereas for CdS:Cr nanoparticles, a broad emission band ranging from 420 nm to 730 nm with a maximum at similar to 587 nm is observed. The broad emission band is due to the overlapped emissions from variety of defects. EPR spectra of CdS:Cr samples reveal resonance signal at g = 2.143 corresponding to interacting Cr3+ ions. VSM studies indicate that the diamagnetic CdS nanoparticles are transform to ferromagnetic for 3% Cr3+ doping and the ferromagnetic nature is diminished with increasing the doping concentration to 5%. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We establish the importance of modified Einstein's gravity (MG) in white dwarfs (WDs) for the first time in the literature. We show that MG leads to significantly sub- and super-Chandrasekhar limiting mass WDs, depending on a single model parameter. However, conventional WDs on approaching Chandrasekhar's limit are expected to trigger Type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe. Nevertheless, observations of several peculiar, under-and over-luminous SNeIa argue for the limiting mass widely different from Chandrasekhar's limit. Explosions of MG induced sub-and super-Chandrasekhar limiting mass WDs explain under-and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes. Our discovery questions both the global validity of Einstein's gravity and the uniqueness of Chandrasekhar's limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White-light emitting Dy3+ doped layered BiOCl phosphors were synthesized by the solid state route and their structure was confirmed by the Rietveld refinement method. On substitution of Dy3+ ion to Bi3+-site in BiOCl, the photoluminescence spectra exhibit blue (F-4(9/2) -> H-6(15/2)), yellow (F-4(9/2) -> H-6(13/2)) and red (F-4(9/2) -> H-6(11/2)) emissions which function together to generate white light. It was found that the emission intensity increases up to 9 mol% of Dy3+ and then quenched due to dipole-dipole interaction. Judd-Ofelt theory and radiative properties suggest that the present phosphors have a long lifetime, high quantum efficiency, excellent color purity and better stimulated emission cross-section compared to reported Dy3+ doped compounds. The obtained color chromaticity results are close to the National Television System Committee standard and clearly establish the bright prospects of these phosphors in white luminescence. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White-light emitting Dy3+ doped layered BiOCl phosphors were synthesized by the solid state route and their structure was confirmed by the Rietveld refinement method. On substitution of Dy3+ ion to Bi3+-site in BiOCl, the photoluminescence spectra exhibit blue (F-4(9/2) -> H-6(15/2)), yellow (F-4(9/2) -> H-6(13/2)) and red (F-4(9/2) -> H-6(11/2)) emissions which function together to generate white light. It was found that the emission intensity increases up to 9 mol% of Dy3+ and then quenched due to dipole-dipole interaction. Judd-Ofelt theory and radiative properties suggest that the present phosphors have a long lifetime, high quantum efficiency, excellent color purity and better stimulated emission cross-section compared to reported Dy3+ doped compounds. The obtained color chromaticity results are close to the National Television System Committee standard and clearly establish the bright prospects of these phosphors in white luminescence. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and synthesis of two structurally close and complementarily fluorescent boron based molecular siblings 2 and 3 are reported. The luminescence properties of individual triads are modulated to complement each other by controlling the intramolecular energy transfer in 2 and 3. The binary mixture of 2 and 3 emits white-light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite extensive research into triosephosphate isomerases (TIMs), there exists a gap in understanding of the remarkable conjunction between catalytic loop-6 (residues 166-176) movement and the conformational flip of Glu165 (catalytic base) upon substrate binding that primes the active site for efficient catalysis. The overwhelming occurrence of serine at position96 (98% of the 6277 unique TIM sequences), spatially proximal to E165 and the loop-6 residues, raises questions about its role in catalysis. Notably, Plasmodium falciparum TIM has an extremely rare residuephenylalanineat this position whereas, curiously, the mutant F96S was catalytically defective. We have obtained insights into the influence of residue96 on the loop-6 conformational flip and E165 positioning by combining kinetic and structural studies on the PfTIM F96 mutants F96Y, F96A, F96S/S73A, and F96S/L167V with sequence conservation analysis and comparative analysis of the available apo and holo structures of the enzyme from diverse organisms.