183 resultados para video sequence matching
Resumo:
Two families of low correlation QAM sequences are presented here. In a CDMA setting, these sequences have the ability to transport a large amount of data as well as enable variable-rate signaling on the reverse link. The first family Á2SQ - B2− is constructed by interleaving 2 selected QAM sequences. This family is defined over M 2-QAM, where M = 2 m , m ≥ 2. Over 16-QAM, the normalized maximum correlation [`(q)]maxmax is bounded above by <~1.17 ÖNUnknown control sequence '\lesssim' , where N is the period of the sequences in the family. This upper bound on [`(q)]maxmax is the lowest among all known sequence families over 16-QAM.The second family Á4SQ4 is constructed by interleaving 4 selected QAM sequences. This family is defined over M 2-QAM, where M = 2 m , m ≥ 3, i.e., 64-QAM and beyond. The [`(q)]maxmax for sequences in this family over 64-QAM is upper bounded by <~1.60 ÖNUnknown control sequence '\lesssim' . For large M, [`(q)]max <~1.64 ÖNUnknown control sequence '\lesssim' . These upper bounds on [`(q)]maxmax are the lowest among all known sequence families over M 2-QAM, M = 2 m , m ≥ 3.
Resumo:
Regular Expressions are generic representations for a string or a collection of strings. This paper focuses on implementation of a regular expression matching architecture on reconfigurable fabric like FPGA. We present a Nondeterministic Finite Automata based implementation with extended regular expression syntax set compared to previous approaches. We also describe a dynamically reconfigurable generic block that implements the supported regular expression syntax. This enables formation of the regular expression hardware by a simple cascade of generic blocks as well as a possibility for reconfiguring the generic blocks to change the regular expression being matched. Further,we have developed an HDL code generator to obtain the VHDL description of the hardware for any regular expression set. Our optimized regular expression engine achieves a throughput of 2.45 Gbps. Our dynamically reconfigurable regular expression engine achieves a throughput of 0.8 Gbps using 12 FPGA slices per generic block on Xilinx Virtex2Pro FPGA.
Resumo:
Conventional hardware implementation techniques for FIR filters require the computation of filter coefficients in software and have them stored in memory. This approach is static in the sense that any further fine tuning of the filter requires computation of new coefficients in software. In this paper, we propose an alternate technique for implementing FIR filters in hardware. We store a considerably large number of impulse response coefficients of the ideal filter (having box type frequency response) in memory. We then do the windowing process, on these coefficients, in hardware using integer sequences as window functions. The integer sequences are also generated in hardware. This approach offers the flexibility in fine tuning the filter, like varying the transition bandwidth around a particular cutoff frequency.
Resumo:
Structural alignments are the most widely used tools for comparing proteins with low sequence similarity. The main contribution of this paper is to derive various kernels on proteins from structural alignments, which do not use sequence information. Central to the kernels is a novel alignment algorithm which matches substructures of fixed size using spectral graph matching techniques. We derive positive semi-definite kernels which capture the notion of similarity between substructures. Using these as base more sophisticated kernels on protein structures are proposed. To empirically evaluate the kernels we used a 40% sequence non-redundant structures from 15 different SCOP superfamilies. The kernels when used with SVMs show competitive performance with CE, a state of the art structure comparison program.
Resumo:
A built-in-self-test (BIST) subsystem embedded in a 65-nm mobile broadcast video receiver is described. The subsystem is designed to perform analog and RF measurements at multiple internal nodes of the receiver. It uses a distributed network of CMOS sensors and a low bandwidth, 12-bit A/D converter to perform the measurements with a serial bus interface enabling a digital transfer of measured data to automatic test equipment (ATE). A perturbation/correlation based BIST method is described, which makes pass/fail determination on parts, resulting in significant test time and cost reduction.
Resumo:
In this article, we consider the single-machine scheduling problem with past-sequence-dependent (p-s-d) setup times and a learning effect. The setup times are proportional to the length of jobs that are already scheduled; i.e. p-s-d setup times. The learning effect reduces the actual processing time of a job because the workers are involved in doing the same job or activity repeatedly. Hence, the processing time of a job depends on its position in the sequence. In this study, we consider the total absolute difference in completion times (TADC) as the objective function. This problem is denoted as 1/LE, (Spsd)/TADC in Kuo and Yang (2007) ('Single Machine Scheduling with Past-sequence-dependent Setup Times and Learning Effects', Information Processing Letters, 102, 22-26). There are two parameters a and b denoting constant learning index and normalising index, respectively. A parametric analysis of b on the 1/LE, (Spsd)/TADC problem for a given value of a is applied in this study. In addition, a computational algorithm is also developed to obtain the number of optimal sequences and the range of b in which each of the sequences is optimal, for a given value of a. We derive two bounds b* for the normalising constant b and a* for the learning index a. We also show that, when a < a* or b > b*, the optimal sequence is obtained by arranging the longest job in the first position and the rest of the jobs in short processing time order.
Resumo:
With the advent of Internet, video over IP is gaining popularity. In such an environment, scalability and fault tolerance will be the key issues. Existing video on demand (VoD) service systems are usually neither scalable nor tolerant to server faults and hence fail to comply to multi-user, failure-prone networks such as the Internet. Current research areas concerning VoD often focus on increasing the throughput and reliability of single server, but rarely addresses the smooth provision of service during server as well as network failures. Reliable Server Pooling (RSerPool), being capable of providing high availability by using multiple redundant servers as single source point, can be a solution to overcome the above failures. During a possible server failure, the continuity of service is retained by another server. In order to achieve transparent failover, efficient state sharing is an important requirement. In this paper, we present an elegant, simple, efficient and scalable approach which has been developed to facilitate the transfer of state by the client itself, using extended cookie mechanism, which ensures that there is no noticeable change in disruption or the video quality.
Resumo:
Rate control regulates the instantaneous video bit -rate to maximize a picture quality metric while satisfying channel constraints. Typically, a quality metric such as Peak Signalto-Noise ratio (PSNR) or weighted signal -to-noise ratio(WSNR) is chosen out of convenience. However this metric is not always truly representative of perceptual video quality.Attempts to use perceptual metrics in rate control have been limited by the accuracy of the video quality metrics chosen.Recently, new and improved metrics of subjective quality such as the Video quality experts group's (VQEG) NTIA1 General Video Quality Model (VQM) have been proven to have strong correlation with subjective quality. Here, we apply the key principles of the NTIA -VQM model to rate control in order to maximize perceptual video quality. Our experiments demonstrate that applying NTIA -VQM motivated metrics to standard TMN8 rate control in an H.263 encoder results in perceivable quality improvements over a baseline TMN8 / MSE based implementation.
Resumo:
Non-Identical Duplicate video detection is a challenging research problem. Non-Identical Duplicate video are a pair of videos that are not exactly identical but are almost similar.In this paper, we evaluate two methods - Keyframe -based and Tomography-based methods to determine the Non-Identical Duplicate videos. These two methods make use of the existing scale based shift invariant (SIFT) method to find the match between the key frames in first method, and the cross-sections through the temporal axis of the videos in second method.We provide extensive experimental results and the analysis of accuracy and efficiency of the above two methods on a data set of Non- Identical Duplicate video-pair.
Resumo:
Image and video filtering is a key image-processing task in computer vision especially in noisy environment. In most of the cases the noise source is unknown and hence possess a major difficulty in the filtering operation. In this paper we present an error-correction based learning approach for iterative filtering. A new FIR filter is designed in which the filter coefficients are updated based on Widrow-Hoff rule. Unlike the standard filter the proposed filter has the ability to remove noise without the a priori knowledge of the noise. Experimental result shows that the proposed filter efficiently removes the noise and preserves the edges in the image. We demonstrate the capability of the proposed algorithm by testing it on standard images infected by Gaussian noise and on a real time video containing inherent noise. Experimental result shows that the proposed filter is better than some of the existing standard filters
Resumo:
Video streaming applications have hitherto been supported by single server systems. A major drawback of such a solution is that it increases the server load. The server restricts the number of clients that can be simultaneously supported due to limitation in bandwidth. The constraints of a single server system can be overcome in video streaming if we exploit the endless resources available in a distributed and networked system. We explore a P2P system for streaming video applications. In this paper we build a P2P streaming video (SVP2P) service in which multiple peers co-operate to serve video segments for new requests, thereby reducing server load and bandwidth used. Our simulation shows the playback latency using SVP2P is roughly 1/4th of the latency incurred when the server directly streams the video. Bandwidth consumed for control messages (overhead) is as low as 1.5% of the total data transfered. The most important observation is that the capacity of the SVP2P grows dynamically.
Resumo:
Prediction of variable bit rate compressed video traffic is critical to dynamic allocation of resources in a network. In this paper, we propose a technique for preprocessing the dataset used for training a video traffic predictor. The technique involves identifying the noisy instances in the data using a fuzzy inference system. We focus on three prediction techniques, namely, linear regression, neural network and support vector regression and analyze their performance on H.264 video traces. Our experimental results reveal that data preprocessing greatly improves the performance of linear regression and neural network, but is not effective on support vector regression.
Resumo:
During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the ``nonamer binding region,'' which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease. (C) 2011 Elsevier Ltd. All rights reserved.