255 resultados para vegetation structure
Resumo:
Mr= 367.2, monoclinic, C2, a = 8.429 (1),b= 10.184(2), c= 16.570(2)A, /~= 99.18 (1) °, U= 1404.2 A 3, z = 4, D m = 1.73, D x = 1.74 Mg m -3,Cu K~, 2 = 1.5418 A, g = 2.99 mm -1, F(000) = 764,T= 300K, final R for 1524 observed reflections is0.069. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5)= 1.445 (10) and C(1)-O(5)= 1.424(10). The pyranose sugar ring adopts a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of the dipotassium salt of glucose 1-phosphate. The phosphate ester bond, P-O(1), is 1.641 (6)A, slightly longer than the 'high-energy' P-,.O bond in the monopotassium salt of phosphoenolpyruvate [1.612 (6)A]. Two sodium ions are six coordinated while the third has only five neighbours.
Resumo:
Pro-Gly segments in peptides and proteins are prone to adopt the 0-turn conformation. This paper reports experimental data for the presence of this conformation in a linear tripeptide N-acetyl-L-prolylglycyl-L-phenylalanineb oth in the solid state and in solution. X-ray diffraction data on the tripeptide crystal show that it exists in the type I1 0-turn conformation. CD and proton NMR data show that this conformation persists in trifluoroethanol and methanol solutions in equilibrium with the nonhydrogen-bonded structures. Isomerization around the acetyl-prolyl bond is seen to take place in dimethyl sulfoxide solutions of the tripeptide.
Resumo:
NMR studies of methyldichlorophosphine have been undertaken in the nematic phase of mixed liquid crystals of opposite diamagnetic anisotropies. The rα structure is derived. The proton chemical-shift anisotropy has been determined from the studies without the use of a reference compound and without a change of experimental conditions. It is shown that the molecule orients in the liquid crystal with positive diamagnetic anisotropy in such a way that the C3 symmetry axis of the CH3P moiety is preferentially aligned perpendicular to the direction of the magnetic field, unlike other similar systems. This is interpreted in terms of the formation of a weak solvent-solute molecular complex. The heteronuclear indirect spin-spin coupling constants are determined. The sign of the two-bond JPH is found to be positive.
Resumo:
Abstract is not available.
Resumo:
C15HIoN404, monoclinic, P2~/c, a = 10.694(8), b = 11.743 (8), c - 12.658 (8) A, fl = 113.10 (7) °, V = 1462.1 A 3, Z = 4, O m = 1 "38, O c = 1.408 g cm -3, t,t(MoKa, ~, = 0.7107 ]~) = 0.99 cm -i, F(000) = 640. The structure was solved by direct methods and refined to an R value of 0.054 using 1398 intensity measurements. The relative magnitudes of interaction of the substituents and the extent to which a ring can accommodate interactions with substituents are discussed.
Resumo:
The tetrapeptide t-butyloxycarbonyl--aminoisobutyryl--aminoisobutyryl-L- phenylalanyl-L-methionyl amide crystallizes in the orthorhombic space group P212121 with a= 9.096, b= 18.067, c= 21.701 Å and Z= 4. The crystals contain one molecule of dimethyl sulphoxide (DMSO) associated with each peptide. The structure has been solved by direct methods and refined to an R value of 0.103 for 2 672 observed reflections. The peptide adopts a distorted 310 helical structure stabilized by two intramolecular 4 1 hydrogen bonds between the Boc CO and Aib(1) CO groups and the NH groups of Phe(3) and Met(4), respectively. A long hydrogen bond (N O = 3.35 Å) is also observed between Aib(2) CO and one of the terminal amide hydrogens. The DMSO molecule is strongly hydrogen bonded to the Aib(1) NH group. The solid-state conformation agrees well with proposals made on the basis of n.m.r. studies in solution.
Resumo:
Synthesis and structures of several new oxides containing bismuth are described. Three types of structures are common among the multinary oxides containing trivalent bismuth. They are the sillenite structure of γ-Bi2O3, the layered perovskite structure of Aurivillius phases and the pyrochlore structure. The influence of Bi3+∶6s 2 lone pair electrons is seen in all the three structures. In transition metal oxides containing trivalent bismuth,d o cations (Ti4+, Nb5+, W6+) stabilize the layered perovskite structure, while cations containing partially-filledd orbitals (V4+, Cr3+, Fe3+) favour pyrochlore-related structures. Ferroelectric distortion ofMO6 octahedra of thed o cations seems to play an important role in stabilizing layered perovskite structures.
Resumo:
Electron energy loss spectroscopy (EELS) has been employed to monitor surface conductivity changes in YBa2Cu3O7 as a function of temperature. Concomitant use of x-ray photoelectron spectroscopy (XPS) establishes that the formation of oxygen dimers with lowering of temperature is accompanied by a simultaneous increase of surface conductivity.
Resumo:
The structure of PbO---PbF2 glasses has been studied using molecular dynamics (MD). The existence of [OPb4] structural units is observed over the entire glass-forming range, in conformity with a model proposed earlier based on various structural investigations of this system. Various other features of the structural model are also supported by the MD calculations.
Resumo:
It is shown that Tl2Ca2Ba2Cu3O10+δ (2223), the n=3 member of the Tl2O2. Can�1Ba2CunO2n+2 family shows a Tc (zero-resistance) of 125K (onset 140K) only when it is prepared by the sealed tube ceramic method starting from the 1313 composition. The structure is orthorhombic (Image compared to 30� of 2122), but electron diffraction patterns show two possible orthorhombic structures. Lattice images show the expected local structure and also the presence of dislocations and intergrowths. Both 2223 and 2122 oxides absorb microwaves (9.1GHz) intensely in the superconducting state, with some hysteresis. XPS measurements show Cu mainly in the 1+ state, suggesting the important role of oxygen holes.
Resumo:
A ternary metal-nucleotide complex, Na2[Cu(5’-IMP)2(im)o,8(H20)l,2(H20)2h]as~ 1be2e.n4 pHr2ep0a,r ed and its structure analyzed by X-ray diffraction (5’-IMP = inosine 5’-monophos hate; im = imidazole). The complex crystallizes in space group C222, with a = 8.733 (4) A, b = 23.213 (5) A, c = 21.489 (6) 1, and Z = 4. The structure was solved by the heavy-atom method and refined by full-matrix least-squares technique on the basis of 2008 observed reflections to a final R value of 0.087. Symmetry-related 5’-IMP anions coordinate in cis geometry through the N(7) atoms of the bases. The other cis positions of the coordination plane are statistically occupied by nitrogen atoms of disordered im groups and water oxygens with occupancies 0.4 and 0.6, respectively. Water oxygens in axial positions complete the octahedral coordination of Cu(I1). The complex is isostructural with C~S-[P~(S’-IMP),(NH~)~a] m”,o del proposed for Pt(I1) binding to DNA. The base binding observed in the present case is different from the typical ”phosphate only” binding shown from earlier studies on metal-nucleotide complexes containing various other ?r-aromatic amines.
Resumo:
The Metropolis algorithm has been generalized to allow for the variation of shape and size of the MC cell. A calculation using different potentials illustrates how the generalized method can be used for the study of crystal structure transformations. A restricted MC integration in the nine dimensional space of the cell components also leads to the stable structure for the Lennard-Jones potential.