117 resultados para triterpene esters
Resumo:
Acetaminophen is a widely prescribed drug used to relieve pain and fever; however, it is a leading cause of drug-induced liver injury and a burden on public healthcare. In this study, hepatotoxicity in mice post oral dosing of acetaminophen was investigated using liver and sera samples with Fourier Transform Infrared microspectroscopy. The infrared spectra of acetaminophen treated livers in BALB/ mice show decrease in glycogen, increase in amounts of cholesteryl esters and DNA respectively. Rescue experiments using L-methionine demonstrate that depletion in glycogen and increase in DNA are abrogated with pre-treatment, but not post-treatment, with L-methionine. This indicates that changes in glycogen and DNA are more sensitive to the rapid depletion of glutathione. Importantly, analysis of sera identified lowering of glycogen and increase in DNA and chlolesteryl esters earlier than increase in alanine aminotransferase, which is routinely used to diagnose liver damage. In addition, these changes are also observed in C57BL/6 and Nos2(-/-) mice. There is no difference in the kinetics of expression of these three molecules in both strains of mice, the extent of damage is similar and corroborated with ALT and histological analysis. Quantification of cytokines in sera showed increase upon APAP treatment. Although the levels of Tnf alpha and Ifn gamma in sera are not significantly affected, Nos2(-/-) mice display lower Il6 but higher Il10 levels during this acute model of hepatotoxicity. Overall, this study reinforces the growing potential of Fourier Transform Infrared microspectroscopy as a fast, highly sensitive and label-free technique for non-invasive diagnosis of liver damage. The combination of Fourier Transform Infrared microspectroscopy and cytokine analysis is a powerful tool to identify multiple biomarkers, understand differential host responses and evaluate therapeutic regimens during liver damage and, possibly, other diseases.
Resumo:
The efficient deprotection of several acetals, dithioacetals, and tetrahydropyranyl (THP) ethers under ambient conditions, using chloral hydrate in hexane, is described. Excellent yields were realized for a wide range of both aliphatic and aromatic substrates. The method is characterized by mild conditions (room temperatures or below), simple workup, and the ready availability of chloral hydrate. High chemoselectivity was also observed in the deprotection, acetonides, esters, and amides being unaffected under the reaction conditions. Products were generally purified chromatographically and identified spectrally. These results constitute a novel addition to current methodology involving a widely employed deprotection tactic in organic synthesis. It seems likely that the mechanism of the reaction involves adsorption of the substrate on the surface of the sparingly soluble chloral hydrate.
Resumo:
The phosphorescence intensity of unilamellar DOPC vesicles with embedded Tb3+-cholate complexes depends on the concentration of dihydroxynaphthalene (DHN) as sensitizer in solution. This was used to monitor the enzymatic conversion of DHN esters or DHN glucosides by enzymes in aqueous buffered solution.
Resumo:
Algae grown in outdoor reactors (volume: 10 L and depth: 20 cm) were fed directly with filtered and sterilised municipal wastewater. The nutrient removal efficiencies were 86%, 90%, 89%, 70% and 76% for TOC, TN, NH4-N, TP and OP, respectively, and lipid content varied from 18% to 28.5% of dry algal biomass. Biomass productivity of similar to 122 mg/l/d (surface productivity 24.4 g/m(2)/d) and lipid productivity of similar to 32 mg/l/d were recorded. Gas chromatography and mass spectrometry (GC-MS) analyses of the fatty acid methyl esters (FAME) showed a higher content of desirable fatty acids (bearing biofuel properties) with major contributions from saturates such as palmitic acid C16:0; similar to 40%] and stearic acid C18:0; similar to 34%], followed by unsaturates such as oleic acid C18:1(9); similar to 10%] and linoleic acid C18:2(9,12); similar to 5%]. The decomposition of algal biomass and reactor residues with an exothermic heat content of 123.4 J/g provides the scope for further energy derivation. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We demonstrate here that supramolecular interactions enhance the sensitivity towards detection of electron-deficient nitro-aromatic compounds (NACs) over discrete analogues. NACs are the most commonly used explosive ingredients and are common constituents of many unexploded landmines used during World WarII. In this study, we have synthesised a series of pyrene-based polycarboxylic acids along with their corresponding discrete esters. Due to the electron richness and the fluorescent behaviour of the pyrene moiety, all the compounds act as sensors for electron-deficient NACs through a fluorescence quenching mechanism. A Stern-Volmer quenching constant determination revealed that the carboxylic acids are more sensitive than the corresponding esters towards NACs in solution. The high sensitivity of the acids was attributed to supramolecular polymer formation through hydrogen bonding in the case of the acids, and the enhancement mechanism is based on an exciton energy migration upon excitation along the hydrogen-bond backbone. The presence of intermolecular hydrogen bonding in the acids in solution was established by solvent-dependent fluorescence studies and dynamic light scattering (DLS) experiments. In addition, the importance of intermolecular hydrogen bonds in solid-state sensing was further explored by scanning tunnelling microscopy (STM) experiments at the liquid-solid interface, in which structures of self-assembled monolayer of the acids and the corresponding esters were compared. The sensitivity tests revealed that these supramolecular sensors can even detect picric acid and trinitrotoluene in solution at levels as low as parts per trillion (ppt), which is much below the recommended permissible level of these constituents in drinking water.
Resumo:
Two Chrastil type expressions have been developed to model the solubility of supercritical fluids/gases in liquids. The three parameter expressions proposed correlates the solubility as a function of temperature, pressure and density. The equation can also be used to check the self-consistency of the experimental data of liquid phase compositions for supercritical fluid-liquid equilibria. Fifty three different binary systems (carbon-dioxide + liquid) with around 2700 data points encompassing a wide range of compounds like esters, alcohols, carboxylic acids and ionic liquids were successfully modeled for a wide range of temperatures and pressures. Besides the test for self-consistency, based on the data at one temperature, the model can be used to predict the solubility of supercritical fluids in liquids at different temperatures. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Calcineurin-like metallophosphoesterases (MPEs) form a large superfamily of binuclear metal-ion-centre-containing enzymes that hydrolyse phosphomono-, phosphodi-or phosphotri-esters in a metal-dependent manner. The MPE domain is found in Mre11/SbcD DNA-repair enzymes, mammalian phosphoprotein phosphatases, acid sphingomyelinases, purple acid phosphatases, nucleotidases and bacterial cyclic nucleotide phosphodiesterases. Despite this functional diversity, MPEs show a remarkably similar structural fold and active-site architecture. In the present review, we summarize the available structural, biochemical and functional information on these proteins. We also describe how diversification and specialization of the core MPE fold in various MPEs is achieved by amino acid substitution in their active sites, metal ions and regulatory effects of accessory domains. Finally, we discuss emerging roles of these proteins as non-catalytic protein-interaction scaffolds. Thus we view the MPE superfamily as a set of proteins with a highly conserved structural core that allows embellishment to result in dramatic and niche-specific diversification of function.
Resumo:
This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes p-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.
Resumo:
Synthesis of 3-(indol-2-yl)succinimide derivatives is presented using a directing group strategy. Selective functionalization of C-2 in the presence of highly reactive C-3 in indole derivatives has been achieved. A conjugate addition product instead of Heck-type product has been brought about by careful selection of the alkene partner (maleimides and maleate esters) such that a beta-hydride elimination is avoided.
Resumo:
Sepsis is a life threatening condition resulting from a high burden of infection. It is a major health care problem and associated with inflammation, organ dysfunction and significant mortality. However, proper understanding and delineating the changes that occur during this complex condition remains a challenge. A comparative study involving intra-peritoneal injection of BALB/c mice with Salmonella Typhimurium (infection), lipopolysaccharide (endotoxic shock) or thioglycollate (sterile peritonitis) was performed. The changes in organs and sera were profiled using immunological assays and Fourier Transform Infrared (FTIR) micro-spectroscopy. There is a rapid rise in inflammatory cytokines accompanied with lowering of temperature, respiratory rate and glucose amounts in mice injected with S. Typhimurium or lipopolysaccharide. FTIR identifies distinct changes in liver and sera: decrease in glycogen and protein/lipid ratio and increase in DNA and cholesteryl esters. These changes were distinct from the pattern observed in mice treated with thioglycollate and the differences in the data obtained between the three models are discussed. The combination of FTIR spectroscopy and other biomarkers will be valuable in monitoring molecular changes during sepsis. GRAPHICS] Intra-peritoneal infection with high dose of Salmonella Typhimurium leads to rapid increase in inflammatory cytokines, e.g. Tnf alpha (A). FTIR analysis of liver (B) and sera (C) identifies several metabolic changes: glycogen, protein/lipid, cholesteryl esters and DNA.
Resumo:
An efficient azidation of 1,3-dicarbonyl compounds led to tertiary azides in the presence of tetrabutylammonium iodide (TBAI). TBAI is used as a pre-catalyst along with aq. tert-butyl hydroperoxide (TBHP) as an oxidant in aqueous medium. This operationally simple, practical, mild and green method provides an opportunity to synthesize a variety of azidated -keto esters, amides, and ketones in good yields.
Resumo:
A pair of first and second generation poly(alkyl ether imine) dendrimers is prepared, having covalently attached cholesteryl moieties at their peripheries. The pairs in each generation differ in the alkyl-linker which constitute the dendritic core moieties, even when the number of cholesteryl moieties remains uniform in each pair. The dendrimer pairs are two first and second generation poly(ethyl ether imine) and poly(propyl ether imine) dendrimers, modified with 4 and 8 cholesteryl esters at the peripheries in each pair, respectively. The dendrimer pairs exhibit differing thermotropic mesophase properties. Microscopic, thermal and X-ray diffraction studies reveal a lamellar mesophase for the first generation ethyl-, first and second generation propyl-linker dendrimers. Whereas, the second generation ethyl-linker dendrimer exhibits a layered structure with a superimposed in-plane modulation, the length of which corresponds to a rectangular column width. The role of the dendrimer core moieties with differing linkers in modifying the mesophase properties is studied. (C) 2016 Elsevier Ltd. All rights reserved.