137 resultados para transitional change
Resumo:
Water is the most important medium through which climate change influences human life. Rising temperatures together with regional changes in precipitation patterns are some of the impacts of climate change that have implications on water availability, frequency and intensity of floods and droughts, soil moisture, water quality, water supply and water demands for irrigation and hydropower generation. In this article we provide an introduction to the emerging field of hydrologic impacts of climate change with a focus on water availability, water quality and irrigation demands. Climate change estimates on regional or local spatial scales are burdened with a considerable amount of uncertainty, stemming from various sources such as climate models, downscaling and hydrological models used in the impact assessments and uncertainty in the downscaling relationships. The present article summarizes the recent advances on uncertainty modeling and regional impacts of climate change for the Mahanadi and Tunga-Bhadra Rivers in India.
Resumo:
Climate change impact on a groundwater-dependent small urban town has been investigated in the semiarid hard rock aquifer in southern India. A distributed groundwater model was used to simulate the groundwater levels in the study region for the projected future rainfall (2012-32) obtained from a general circulation model (GCM) to estimate the impacts of climate change and management practices on groundwater system. Management practices were based on the human-induced changes on the urban infrastructure such as reduced recharge from the lakes, reduced recharge from water and wastewater utility due to an operational and functioning underground drainage system, and additional water extracted by the water utility for domestic purposes. An assessment of impacts on the groundwater levels was carried out by calibrating a groundwater model using comprehensive data gathered during the period 2008-11 and then simulating the future groundwater level changes using rainfall from six GCMs Institute of Numerical Mathematics Coupled Model, version 3.0 (INM-CM. 3.0); L'Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL-CM4); Model for Interdisciplinary Research on Climate, version 3.2 (MIROC3.2); ECHAM and the global Hamburg Ocean Primitive Equation (ECHO-G); Hadley Centre Coupled Model, version 3 (HadCM3); and Hadley Centre Global Environment Model, version 1 (HadGEM1)] that were found to show good correlation to the historical rainfall in the study area. The model results for the present condition indicate that the annual average discharge (sum of pumping and natural groundwater outflow) was marginally or moderately higher at various locations than the recharge and further the recharge is aided from the recharge from the lakes. Model simulations showed that groundwater levels were vulnerable to the GCM rainfall and a scenario of moderate reduction in recharge from lakes. Hence, it is important to sustain the induced recharge from lakes by ensuring that sufficient runoff water flows to these lakes.
Resumo:
Two heterometallic coordination polymers (CPs) have been prepared using (NiL)-L-II](2)Co-II (where H2L = N,N'-bis(salicylidene)-1,3-propanediamine) as nodes and dicyanamido spacers by varying the solvent for synthesis. Structural characterizations revealed that methanol assisted the formation of a two-dimensional (4,4) connected rhombic grid network of (NiL)(2)Co(NCNCN)2](infinity) (1a) whereas relatively less polar acetonitrile afforded a different superstructure {(NiL)(2)Co(NCNCN)(2)]center dot CH3CN}(infinity) (1b) with a two-dimensional (4,4) connected square grid network. The presence of acetonitrile molecules in the structure of 1b seems to change the spatial orientation of the terminal metalloligands NiL] from pseudo-eclipsed in 1a to staggered-like in 1b around the central Co(II). These structural changes in the nodes together with the conformationally flexible dicyanamido spacers, which are cis coordinated to the Co(II) in both trinuclear units, led to the differences in the final 2D network. Variable-temperature magnetic susceptibility measurements revealed that this supramolecular isomerism led to a drastic transition from spin-frustrated antiferromagnetism for 1a to a dominant ferromagnetic behaviour for 1b. The geometrical differences in Ni2Co coordination clusters (CCs) which are scalene triangular in 1a but nearly linear in 1b, are held responsible for the changes of the magnetic properties. The DFT calculations of exchange interactions between metal centres provide a clear evidence of the role played by the fundamental geometrical factors on the nature and magnitude of the magnetic coupling in these pseudo-polymorphic CPs.
Resumo:
Forest-management goals in the context of climate change are to reduce the adverse impact of climate change on biodiversity, ecosystem services and carbon stocks. For developing an effective adaptation strategy, knowledge on nature and sources of vulnerability of forests is necessary to conserve or enhance carbon sinks. However, assessing the vulnerability of forest ecosystems is a challenging task, as the mechanisms that determine vulnerability cannot be observed directly. In this article, we list the challenges in forest vulnerability assessments and propose an assessment of inherent vulnerability by using process-based indicators under the current climate. We also suggest periodic assessment of vulnerability, which is necessary to review adaptation strategies for the management of forests and forest carbon stocks.
Resumo:
In a wireless receiver, a down-converted RF signal undergoes a transient phase shift, when the gain state is changed to adjust for varying conditions in transmission and propagation. A method is developed, in which such phase shifts are detected asynchronously, and their undesirable effects on the bit error rate are corrected. The method was developed for and used in, the system-level characterization and calibration of a 65-nm CMOS UHF receiver. The phase-shifts associated with specific gain-state transitions were measured within a test framework, and used in the baseband signal processing blocks to compensate for errors, whenever the receiver anticipated a gain-state transition.
Resumo:
This paper presents an approach to model the expected impacts of climate change on irrigation water demand in a reservoir command area. A statistical downscaling model and an evapotranspiration model are used with a general circulation model (GCM) output to predict the anticipated change in the monthly irrigation water requirement of a crop. Specifically, we quantify the likely changes in irrigation water demands at a location in the command area, as a response to the projected changes in precipitation and evapotranspiration at that location. Statistical downscaling with a canonical correlation analysis is carried out to develop the future scenarios of meteorological variables (rainfall, relative humidity (RH), wind speed (U-2), radiation, maximum (Tmax) and minimum (Tmin) temperatures) starting with simulations provided by a GCM for a specified emission scenario. The medium resolution Model for Interdisciplinary Research on Climate GCM is used with the A1B scenario, to assess the likely changes in irrigation demands for paddy, sugarcane, permanent garden and semidry crops over the command area of Bhadra reservoir, India. Results from the downscaling model suggest that the monthly rainfall is likely to increase in the reservoir command area. RH, Tmax and Tmin are also projected to increase with small changes in U-2. Consequently, the reference evapotranspiration, modeled by the Penman-Monteith equation, is predicted to increase. The irrigation requirements are assessed on monthly scale at nine selected locations encompassing the Bhadra reservoir command area. The irrigation requirements are projected to increase, in most cases, suggesting that the effect of projected increase in rainfall on the irrigation demands is offset by the effect due to projected increase/change in other meteorological variables (viz., Tmax and Tmin, solar radiation, RH and U-2). The irrigation demand assessment study carried out at a river basin will be useful for future irrigation management systems. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Amorphous Ge15Te85-xSix thin film switching devices (1 <= x <= 6) have been deposited in sandwich geometry, on glass substrates with aluminum electrodes, by flash evaporation technique. These devices exhibit memory type electrical switching, like bulk Ge15Te85-xSix glasses. However, unlike the bulk glasses, a-Ge15Te85-xSix films exhibit a smooth electrical switching behavior. The electrical switching fields of a-Ge15Te85-xSix thin film samples are also comparable with other chalcogenide samples used in memory applications. The switching fields of a-Ge15Te85-xSix films have been found to increase with increasing Si concentration. Also, the optical band gap of a-Ge15Te85-xSix films is found to increase with Si content. The observed results have been understood on the basis of increase in network connectivity and rigidity with Si addition. (C) 2013 Elsevier Ltd. All rights reserved.
Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas
Resumo:
The Himalayas are presently holding the largest ice masses outside the polar regions and thus (temporarily) store important freshwater resources. In contrast to the contemplation of glaciers, the role of runoff from snow cover has received comparably little attention in the past, although (i) its contribution is thought to be at least equally or even more important than that of ice melt in many Himalayan catchments and (ii) climate change is expected to have widespread and significant consequences on snowmelt runoff. Here, we show that change assessment of snowmelt runoff and its timing is not as straightforward as often postulated, mainly as larger partial pressure of H2O, CO2, CH4, and other greenhouse gases might increase net long-wave input for snowmelt quite significantly in a future atmosphere. In addition, changes in the short-wave energy balance such as the pollution of the snow cover through black carbon or the sensible or latent heat contribution to snowmelt are likely to alter future snowmelt and runoff characteristics as well. For the assessment of snow cover extent and depletion, but also for its monitoring over the extremely large areas of the Himalayas, remote sensing has been used in the past and is likely to become even more important in the future. However, for the calibration and validation of remotely-sensed data, and even-more so in light of possible changes in snow-cover energy balance, we strongly call for more in-situ measurements across the Himalayas, in particular for daily data on new snow and snow cover water equivalent, or the respective energy balance components. Moreover, data should be made accessible to the scientific community, so that the latter can more accurately estimate climate change impacts on Himalayan snow cover and possible consequences thereof on runoff. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Chalcogenide glasses are interesting materials for their infrared transmitting properties and photo-induced effects. This paper reports the influence of light on the optical properties of Sb10S40Se50 thin films. The amorphous nature and chemical composition of the deposited film was studied by X-ray diffraction and energy dispersive X-ray analysis (EDAX). The optical constants, i.e., refractive index, extinction coefficient, and optical band gap as well as film thickness are determined from the measured transmission spectra using the Swanepoel method. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. The dispersion energy parameter was found to be less for the laser-irradiated film, which indicates the laser-irradiated film is more microstructurally disordered as compared to the as-prepared film. It is observed that laser-irradiation of the films leads to decrease in optical band gap (photo-darkening) while increase in refractive index. The decrease in the optical band gap is explained on the basis of change in nature of films due to chemical disorderness and the increase in refractive index may be due to the densification of films with improved grain structure because of microstructural disorderness in the films. The optical changes are supported by X-ray photoelectron spectroscopy data. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Four neutral polynuclear magnetic clusters, (Mn6Mn2Na2I)-Mn-III-Na-II(N-3)(8)(mu(1)-O)(2)(L-1)(6)(CH3OH)(2)] (1), (Mn6Na2I)-Na-III(N-3)(4)(mu(4)-O)(2)(L-2)(4)(CH3COO)(4)] (2), Ni-5(II)(N-3)(4)(HL1)(4)(HCOO)(2)(CH3OH)(2)(H2O)(2)]center dot 2CH(3)OH (3) and (Ni4Na2I)-Na-II(N-3)(4)(HL2)(6)]center dot 2CH(3)OH (4) have been synthesized using tetradentate ligands H2L1-2 along with azide as a co-ligand. H2L1-2 are the products formed in situ upon condensation of 2-hydroxy-3-methoxybenzaldehyde with 1-aminopropan-2-ol and 1-aminopropan-3-ol, respectively. Single crystal X-ray diffraction and bond valence sum calculation showed that complex 1 is composed of both Mn-III and Mn-II. Complex 3 contains coordinated formate, which was formed upon in situ oxidation of methanol. The magnetic study over a wide range of temperatures of all the complexes (1-4) showed that 1 and 2 are antiferromagnetic whereas other two (3-4) are predominantly ferromagnetic. The estimated ground states of the complexes are S approximate to 3(1), S = 4(2), S = 5(3) and S approximate to 4(4), respectively. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A variety of methods are available to estimate future solar radiation (SR) scenarios at spatial scales that are appropriate for local climate change impact assessment. However, there are no clear guidelines available in the literature to decide which methodologies are most suitable for different applications. Three methodologies to guide the estimation of SR are discussed in this study, namely: Case 1: SR is measured, Case 2: SR is measured but sparse and Case 3: SR is not measured. In Case 1, future SR scenarios are derived using several downscaling methodologies that transfer the simulated large-scale information of global climate models to a local scale ( measurements). In Case 2, the SR was first estimated at the local scale for a longer time period using sparse measured records, and then future scenarios were derived using several downscaling methodologies. In Case 3: the SR was first estimated at a regional scale for a longer time period using complete or sparse measured records of SR from which SR at the local scale was estimated. Finally, the future scenarios were derived using several downscaling methodologies. The lack of observed SR data, especially in developing countries, has hindered various climate change impact studies. Hence, this was further elaborated by applying the Case 3 methodology to a semi-arid Malaprabha reservoir catchment in southern India. A support vector machine was used in downscaling SR. Future monthly scenarios of SR were estimated from simulations of third-generation Canadian General Circulation Model (CGCM3) for various SRES emission scenarios (A1B, A2, B1, and COMMIT). Results indicated a projected decrease of 0.4 to 12.2 W m(-2) yr(-1) in SR during the period 2001-2100 across the 4 scenarios. SR was calculated using the modified Hargreaves method. The decreasing trends for the future were in agreement with the simulations of SR from the CGCM3 model directly obtained for the 4 scenarios.
Resumo:
The capacity of species to track shifting climates into the future will strongly influence outcomes for biodiversity under a rapidly changing climate. However, we know remarkably little about the dispersal abilities of most species and how these may be influenced by climate change. Here we show that climate change is projected to substantially reduce the seed dispersal services provided by frugivorous vertebrates in rainforests across the Australian Wet Tropics. Our model projections show reductions in both median and long-distance seed dispersal, which may markedly reduce the capacity of many rainforest plant species to track shifts in suitable habitat under climate change. However, our analyses suggest that active management to maintain the abundances of a small set of important frugivores under climate change could markedly reduce the projected loss of seed dispersal services and facilitate shifting distributions of rainforest plant species.
Resumo:
Long-term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6-28years. Abundance fluctuations in all forests are large and consistent with population dynamics models in which temporal environmental variance plays a central role. At some sites we identify clear environmental drivers, such as fire and drought, that could underlie these patterns, but at other sites there is a need for further research to identify drivers. In addition, cross-site comparisons showed that abundance fluctuations were smaller at species-rich sites, consistent with the idea that stable environmental conditions promote higher diversity. Much community ecology theory emphasises demographic variance and niche stabilisation; we encourage the development of theory in which temporal environmental variance plays a central role.
Resumo:
Bulk samples of S40Se60,Sb-x (with x=10, 20, 30 and 40 at. %) were prepared from high purity chemicals by melt quenching technique. The samples compositions were confirmed by using energy dispersive analysis of X-rays. X-ray diffraction studies revealed that all the samples have poly-crystalline phase. The variation in optical properties with compositional has been investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The optical band gap of the thin films is found to be decreased with composition. Increasing Sb content was found to affect the structural and optical properties of bulk samples. The intensity of core level spectra changes with the addition of Sb clearly interprets the optical properties change due to compositional variation. The Raman shift and new peak formation in these samples clearly show the structural modifications due to Sb addition.
Resumo:
Developments in the statistical extreme value theory, which allow non-stationary modeling of changes in the frequency and severity of extremes, are explored to analyze changes in return levels of droughts for the Colorado River. The transient future return levels (conditional quantiles) derived from regional drought projections using appropriate extreme value models, are compared with those from observed naturalized streamflows. The time of detection is computed as the time at which significant differences exist between the observed and future extreme drought levels, accounting for the uncertainties in their estimates. Projections from multiple climate model-scenario combinations are considered; no uniform pattern of changes in drought quantiles is observed across all the projections. While some projections indicate shifting to another stationary regime, for many projections which are found to be non-stationary, detection of change in tail quantiles of droughts occurs within the 21st century with no unanimity in the time of detection. Earlier detection is observed in droughts levels of higher probability of exceedance. (C) 2014 Elsevier Ltd. All rights reserved.