448 resultados para tp-Kadec Norm
Resumo:
In this paper we analyze a deploy and search strategy for multi-agent systems. Mobile agents equipped with sensors carry out search operation in the search space. The lack of information about the search space is modeled as an uncertainty density distribution over the space, and is assumed to be known to the agents a priori. In each step, the agents deploy themselves in an optimal way so as to maximize per step reduction in the uncertainty density. We analyze the proposed strategy for convergence and spatial distributedness. The control law moving the agents has been analyzed for stability and convergence using LaSalle's invariance principle, and for spatial distributedness under a few realistic constraints on the control input such as constant speed, limit on maximum speed, and also sensor range limits. The simulation experiments show that the strategy successfully reduces the average uncertainty density below the required level.
Resumo:
Use of space-frequency block coded (SFBC) OFDM signals is advantageous in high-mobility broadband wireless access, where the channel is highly time- as well as frequency-selective because of which the receiver experiences both inter-symbol interference (ISI) as well as inter-carrier interference (10). ISI occurs due to the violation of the 'quasi-static' fading assumption caused due to frequency- and/or time-selectivity of the channel. In addition, ICI occurs due to time-selectivity of the channel which results in loss of orthogonality among the subcarriers. In this paper, we are concerned with the detection of SFBC-OFDM signals on time- and frequency-selective MIMO channels. Specifically, we propose and evaluate the performance of an interference cancelling receiver for SFBC-OFDM which alleviates the effects of ISI and ICI in highly time- and frequency-selective channels.
Resumo:
Multicode operation in space-time block coded (STBC) multiple input multiple output (MIMO) systems can provide additional degrees of freedom in code domain to achieve high data rates. In such multicode STBC systems, the receiver experiences code domain interference (CDI) in frequency selective fading. In this paper, we propose a linear parallel interference cancellation (LPIC) approach to cancel the CDI in multicode STBC in frequency selective fading. The proposed detector first performs LPIC followed by STBC decoding. We evaluate the bit error performance of the detector and show that it effectively cancels the CDI and achieves improved error performance. Our results further illustrate how the combined effect of interference cancellation, transmit diversity, and RAKE diversity affect the bit error performance of the system.
Resumo:
We propose a new weighting function which is computationally simple and an approximation to the theoretically derived optimum weighting function shown in the literature. The proposed weighting function is perceptually motivated and provides improved vector quantization performance compared to several weighting functions proposed so far, for line spectrum frequency (LSF) parameter quantization of both clean and noisy speech data.
Resumo:
Zero entries in complex orthogonal designs (CODs) impede their practical implementation. In this paper, a method of obtaining a no zero entry (NZE) code for 2(k+1) antennas whenever a NZE code exists for 2(k) antennas is presented. This is achieved with slight increase in the ML decoding complexity for regular QAM constellations and no increase for other complex constellations. Since NZE CODs have been constructed recently for 8 antennas our method leads to NZE codes for 16 antennas. Simulation results show good performance of our new codes compared to the well known constructions for 16 and 32 antennas under peak power constraints.
Resumo:
Support Vector Machines(SVMs) are hyperplane classifiers defined in a kernel induced feature space. The data size dependent training time complexity of SVMs usually prohibits its use in applications involving more than a few thousands of data points. In this paper we propose a novel kernel based incremental data clustering approach and its use for scaling Non-linear Support Vector Machines to handle large data sets. The clustering method introduced can find cluster abstractions of the training data in a kernel induced feature space. These cluster abstractions are then used for selective sampling based training of Support Vector Machines to reduce the training time without compromising the generalization performance. Experiments done with real world datasets show that this approach gives good generalization performance at reasonable computational expense.
Resumo:
In this paper, a relative velocity approach is used to analyze the capturability of a geometric guidance law. Point mass models are assumed for both the missile and the target. The speeds of the missile and target are assumed to remain constant throughout the engagement. Lateral acceleration, obtained from the guidance law, is applied to change the path of the missile. The kinematic equations for engagements in the horizontal plane are derived in the relative velocity space. Some analytical results for the capture region are obtained for non-maneuvering and maneuvering targets. For non-maneuvering targets it is enough for the navigation gain to be a constant to intercept the target, while for maneuvering targets a time varying navigation gain is needed for interception. These results are then verified through numerical simulations.
Resumo:
Inventory management (IM) has a decisive role in the enhancement of manufacturing industry's competitiveness. Therefore, major manufacturing industries are following IM practices with the intention of improving their performance. However, the effort to introduce IM in SMEs is very limited due to lack of initiation, expertise, and financial constraints. This paper aims to provide a guideline for entrepreneurs in enhancing their IM performance, as it presents the results of a survey based study carried out for machine tool Small and Medium Enterprises (SMEs) in Bangalore. Having established the significance of inventory as an input, we probed the relationship between IM performance and economic performance of these SMEs. To the extent possible all the factors of production and performance indicators were deliberately considered in pure economic terms. All economic performance indicators adopted seem to have a positive and significant association with IM performance in SMEs. On the whole, we found that SMEs which are IM efficient are likely to perform better on the economic front also and experience higher returns to scale.
Resumo:
We propose certain discrete parameter variants of well known simulation optimization algorithms. Two of these algorithms are based on the smoothed functional (SF) technique while two others are based on the simultaneous perturbation stochastic approximation (SPSA) method. They differ from each other in the way perturbations are obtained and also the manner in which projections and parameter updates are performed. All our algorithms use two simulations and two-timescale stochastic approximation. As an application setting, we consider the important problem of admission control of packets in communication networks under dependent service times. We consider a discrete time slotted queueing model of the system and consider two different scenarios - one where the service times have a dependence on the system state and the other where they depend on the number of arrivals in a time slot. Under our settings, the simulated objective function appears ill-behaved with multiple local minima and a unique global minimum characterized by a sharp dip in the objective function in a small region of the parameter space. We compare the performance of our algorithms on these settings and observe that the two SF algorithms show the best results overall. In fact, in many cases studied, SF algorithms converge to the global minimum.
Resumo:
Four hybrid algorithms has been developed for the solution of the unit commitment problem. They use simulated annealing as one of the constituent techniques, and produce lower cost schedules; two of them have less overhead than other soft computing techniques. They are also more robust to the choice of parameters. A special technique avoids the generating of infeasible schedules, and thus reduces computation time.
Resumo:
Close relationships between guessing functions and length functions are established. Good length functions lead to good guessing functions. In particular, guessing in the increasing order of Lempel-Ziv lengths has certain universality properties for finite-state sources. As an application, these results show that hiding the parameters of the key-stream generating source in a private key crypto-system may not enhance the privacy of the system, the privacy level being measured by the difficulty in brute-force guessing of the key stream.
Resumo:
Synchronization issues pose a big challenge in cooperative communications. The benefits of cooperative diversity could be easily undone by improper synchronization. The problem arises because it would be difficult, from a complexity perspective, for multiple transmitting nodes to synchronize to a single receiver. For OFDM based systems, loss of performance due to imperfect carrier synchronization is severe, since it results in inter-carrier interference (ICI). The use of space-time/space-frequency codes from orthogonal designs are attractive for cooperative encoding. But orthogonal designs suffer from inter-symbol interference (ISI) due to the violation of quasi-static assumption, which can arise due to frequency- or time-selectivity of the channel. In this paper, we are concerned with combating the effects of i) ICI induced by carrier frequency offsets (CFO), and ii) ISI induced by frequency selectivity of the channel, in a cooperative communication scheme using space-frequency block coded (SFBC) OFDM. Specifically, we present an iterative interference cancellation (IC) algorithm to combat the ISI and ICI effects. The proposed algorithm could be applied to any orthogonal or quasi-orthogonal designs in cooperative SFBC OFDM schemes.
Resumo:
We propose a novel, language-neutral approach for searching online handwritten text using Frechet distance. Online handwritten data, which is available as a time series (x,y,t), is treated as representing a parameterized curve in two-dimensions and the problem of searching online handwritten text is posed as a problem of matching two curves in a two-dimensional Euclidean space. Frechet distance is a natural measure for matching curves. The main contribution of this paper is the formulation of a variant of Frechet distance that can be used for retrieving words even when only a prefix of the word is given as query. Extensive experiments on UNIPEN dataset(1) consisting of over 16,000 words written by 7 users show that our method outperforms the state-of-the-art DTW method. Experiments were also conducted on a Multilingual dataset, generated on a PDA, with encouraging results. Our approach can be used to implement useful, exciting features like auto-completion of handwriting in PDAs.
Resumo:
Differential Unitary Space-Time Block codes (STBCs) offer a means to communicate on the Multiple Input Multiple Output (MIMO) channel without the need for channel knowledge at both the transmitter and the receiver. Recently Yuen-Guan-Tjhung have proposed Single-Symbol-Decodable Differential Space-Time Modulation based on Quasi-Orthogonal Designs (QODs) by replacing the original unitary criterion by a scaled unitary criterion. These codes were also shown to perform better than differential unitary STBCs from Orthogonal Designs (ODs). However the rate (as measured in complex symbols per channel use) of the codes of Yuen-Guan-Tjhung decay as the number of transmit antennas increase. In this paper, a new class of differential scaled unitary STBCs for all even number of transmit antennas is proposed. These codes have a rate of 1 complex symbols per channel use, achieve full diversity and moreover they are four-group decodable, i.e., the set of real symbols can be partitioned into four groups and decoding can be done for the symbols in each group separately. Explicit construction of multidimensional signal sets that yield full diversity for this new class of codes is also given.
Resumo:
In this paper, we are concerned with energy efficient area monitoring using information coverage in wireless sensor networks, where collaboration among multiple sensors can enable accurate sensing of a point in a given area-to-monitor even if that point falls outside the physical coverage of all the sensors. We refer to any set of sensors that can collectively sense all points in the entire area-to-monitor as a full area information cover. We first propose a low-complexity heuristic algorithm to obtain full area information covers. Using these covers, we then obtain the optimum schedule for activating the sensing activity of various sensors that maximizes the sensing lifetime. The scheduling of sensor activity using the optimum schedules obtained using the proposed algorithm is shown to achieve significantly longer sensing lifetimes compared to those achieved using physical coverage. Relaxing the full area coverage requirement to a partial area coverage (e.g., 95% of area coverage as adequate instead of 100% area coverage) further enhances the lifetime.