125 resultados para titanium corrosion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution). The interface experiences a jump discontinuity in metal concentration. The extended finite-element model (XFEM) handles this jump discontinuity by using discontinuous-derivative enrichment formulation, eliminating the requirement of using front conforming mesh and re-meshing after each time step as in the conventional finite-element method. However, prior interface location is required so as to solve the governing equations for concentration field for which a numerical technique, the level set method, is used for tracking the interface explicitly and updating it over time. The level set method is chosen as it is independent of shape and location of the interface. Thus, a combined XFEM and level set method is developed in this paper. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed model is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions. An empirical model for pitting potential is also derived based on the finite-element results. Studies show that pitting profile depends on factors such as ion concentration, solution pH and temperature to a large extent. Studying the individual and combined effects of these factors on pitting potential is worth knowing, as pitting potential directly influences corrosion rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, morphology, microstructure, and electrochemical behavior of Zn coatings containing non-toxic additives have been investigated. Zn coatings were electrodeposited over mild steel substrates using Zn sulphate baths containing four different organic additives: sodium gluconate, dextrose, dextrin, and saccharin. All these additives are ``green'' and can be derived from food contents. Morphological and structural characterization using electron microscopy, x-ray diffraction, and texture co-efficient analysis revealed an appreciable alteration in the morphology and texture of the deposit depending on the type of additive used in the Zn plating bath. All the Zn coatings, however, were nano-crystalline irrespective of the type of additive used. Polarization and electrochemical impedance spectroscopic analysis, used to investigate the effect of the change in microstructure and morphology on corrosion resistance behavior, illustrated an improved corrosion resistance for Zn deposits obtained from plating bath containing additives as compared to the pure Zn coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation is an attempt at correlating the crystallographic orientation and mechanical properties of hexagonal commercially pure titanium (cp-titanium). Annealed cp-titanium sheets are subjected to tensile deformation along the rolling direction, along 45 degrees to the rolling direction and along 90 degrees to the rolling direction respectively. Crystallographic textures and mechanical properties of these cp-titanium samples are investigated in the present study. The hardness of different grains/orientations is estimated through nanoindentation, grain average misorientation, orientation estimated elastic stiffness and Taylor factor measurements. It is observed that the hardness of the grains close to basal orientation is higher compared to non-basal orientations. It is further observed that the estimated bulk mechanical properties of cp-titanium have a direct relationship with the volume fraction of basal grains/orientations. (C) 2014 Elsevier Inc All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research work on bulk hydroxyapatite (HA)-based composites are driven by the need to develop biomaterials with better mechanical properties without compromising its bioactivity and biocompatibility properties. Despite several years of research, the mechanical properties of the HA-based composites still need to be enhanced to match the properties of natural cortical bone. In this regard, the scope of this review on the HA-based bulk biomaterials is limited to the processing and the mechanical as well as biocompatibility properties for bone tissue engineering applications of a model system that is hydroxyapatite-titanium (HA-Ti) bulk composites. It will be discussed in this review how HA-Ti based bulk composites can be processed to have better fracture toughness and strength without compromising biocompatibility. The advantages of the functionally gradient materials to integrate the mechanical and biocompatibility properties is a promising approach in hard tissue engineering and has been emphasized here in reference to the limited literature reports. On the biomaterials fabrication aspect, the recent results are discussed to demonstrate that advanced manufacturing techniques, like spark plasma sintering can be adopted as a processing route to restrict the sintering reactions, while enhancing the mechanical properties. Various toughening mechanisms related to careful tailoring of microstructure are discussed. The in vitro cytocompatibilty, cell fate processes as well as in vivo biocompatibility results are also reviewed and the use of flow cytometry to quantify in vitro cell fate processes is being emphasized. (C) 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present work is to study the effect of electrical process Parameters (duty cycle and frequency) on morphological, structural, and in-vitro corrosion characteristics of oxide films formed on zirconium by plasma electrolytic oxidation in an electrolyte system consisting of 5 g/L of trisodium orthophosphate. The oxide films fabricated on zirconium by systematically varying the duty cycle and frequency are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, scratch resistance, corrosion resistance, apatite forming ability and osteoblast cell adhesion. X-ray diffraction pattern of all the oxide films showed the predominance of m-ZrO2 phase. Dense and uniform films with thickness varying from 9 to 15 mu m and roughness in the range of 0.62 to 1.03 mu m are formed. Porosity of oxide films is found to be increased with an increase infrequency. The water contact angle results demonstrated that the oxide films exhibited similar hydrophilicity to zirconium substrate. All oxide films showed improved corrosion resistance, as indicated by far lower corrosion current density and passive corrosion potential compared to the zirconium substrate in simulated body fluid environment, and among the four different combinations of duty cycle and frequency employed in the present study, the oxide film formed at 95% duty cycle and 50 Hz frequency (HDLF film) showed superior pitting corrosion resistance, which can be attributed to its pore free morpholOgy. Scratch test results showed that the HDLF oxide film adhered firmly to the substrate by developing a notable scratch resistance at 19.5 +/- 1.2.N. Besides the best corrosion resistance and scratch retistance, the HDLF film also showed good apatite forming ability and osteo sarcoma cell adhesion on its surface. The HDLF oxide film on zirconium with superior surface characteristics is believed to be useful for various types of implants in the dental and orthopedic fields. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various NixCo1-x alloys (with x varying from 0-60 wt%, Ni: nickel, Co: cobalt) were prepared by vacuum arc melting and mixed with polyvinylidene fluoride (PVDF) to design lightweight, flexible and corrosion resistant materials that can attenuate electromagnetic radiation. The saturation magnetization scaled with the fraction of Co in the alloy. Two key properties such as high-magnetic permeability and high-electrical conductivity were targeted. While the former was achieved using a Ni-Co alloy, multiwalled carbon nanotubes (CNTs) in the composites accomplished the latter. A unique approach was adopted to prepare the composites wherein PVDF powder along with CNTs and Ni-Co flakes were made into a paste, using a solvent, followed by hot pressing. Interestingly, CNTs facilitated in uniform dispersion of the Ni-Co alloy in PVDF, as manifested from synergistic improvement in the electrical conductivity. A significant improvement in the shielding effectiveness (41 dB, >99.99% attenuation) was achieved with the addition of 50 wt% of Ni40Co60 alloy and 3 wt% CNTs. Intriguingly, due to the unique processing technique adopted here, the flexibility of the composites was retained and more interestingly, the composites were resistant to corrosion as compared to only Ni-Co alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibition behavior of colchicine (CC) on the corrosion of mild steel in 0.5 M H2SO4 was evaluated by electrochemical methods such as potentiodynamic polarization and electrochemical impedance spectroscopic measurements. The inhibition efficiency increases with increasing concentration of CC. The potentiodynamic polarization results reveal that CC act as a mixed-type inhibitor by retarding both cathodic and anodic corrosion reactions. Additionally, the synergism was carried out between CC and KI to improve the corrosion inhibition behavior of CC on mild steel. The adsorption of both CC alone and the combined inhibitor (CC + KI) on mild steel surface follows Langmuir adsorption isotherm. The synergism parameter (S (theta) ) was calculated to recognize the existence of synergism between CC and iodide ions. Lastly, an adsorption mechanism of CC molecules with iodide ions is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibition performance of ibuprofen triazole (IT) on mild steel (MS) corrosion in 1.0 M HCl and 0.5 M H2SO4 has been investigated by using electrochemical (potentiodynamic polarization and electrochemical impedance spectroscopy), gravimetric, and quantum chemical studies. Electrochemical investigation indicates that IT hampers MS corrosion via adsorption through a mixed inhibition mechanism. The protection ability of IT increases with an increasing concentration of inhibitor and decreases with increasing temperature. The adsorption of IT molecules on MS surface follows the Langmuir adsorption isotherm. Certain quantum chemical parameters were calculated to ascertain the correlation between inhibitive effect and molecular structure of IT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion behaviour of AE42 magnesium alloy and its composites reinforced with Saffil short fibres and SiC particles in various combinations was investigated. The corrosion rate of the unreinforced alloy was the lowest. The composite reinforced with Saffil short fibre alone exhibited slightly lower corrosion rate than the hybrid composites containing both Saffil short fibres and SiC particles. However, there was no specific trend observed in the corrosion rate of the hybrid composites with respect to the SiC particle content. The degradation of corrosion resistance of the composites was mainly attributed to the irregular and loose surface films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-kappa TiO2 thin films have been fabricated using cost effective sol-gel and spin-coating technique on p-Si (100) wafer. Plasma activation process was used for better adhesion between TiO2 films and Si. The influence of annealing temperature on the structure-electrical properties of titania films were investigated in detail. Both XRD and Raman studies indicate that the anatase phase crystallizes at 400 degrees C, retaining its structural integrity up to 1000 degrees C. The thickness of the deposited films did not vary significantly with the annealing temperature, although the refractive index and the RMS roughness enhanced considerably, accompanied by a decrease in porosity. For electrical measurements, the films were integrated in metal-oxide-semiconductor (MOS) structure. The electrical measurements evoke a temperature dependent dielectric constant with low leakage current density. The Capacitance-voltage (C-V) characteristics of the films annealed at 400 degrees C exhibited a high value of dielectric constant (similar to 34). Further, frequency dependent C-V measurements showed a huge dispersion in accumulation capacitance due to the presence of TiO2/Si interface states and dielectric polarization, was found to follow power law dependence on frequency (with exponent `s'=0.85). A low leakage current density of 3.6 x 10(-7) A/cm(2) at 1 V was observed for the films annealed at 600 degrees C. The results of structure-electrical properties suggest that the deposition of titania by wet chemical method is more attractive and cost-effective for production of high-kappa materials compared to other advanced deposition techniques such as sputtering, MBE, MOCVD and AID. The results also suggest that the high value of dielectric constant kappa obtained at low processing temperature expands its scope as a potential dielectric layer in MOS device technology. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss here a semiconductors assembly comprising of titanium dioxide (TiO2) rods sensitized by cadmium sulfide (CdS) nanocrystals for potential applications in large area electronics on three dimensional (3-D) substrates. Vertically aligned TiO2 rods are grown on a substrate using a 150 degrees C process flow and then sensitized with CdS by SILAR method at room temperature. This structure forms an effective photoconductor as the photo-generated electrons are rapidly removed from the CdS via the TiO2 thereby permitting a hole rich CdS. Current-voltage characteristics are measured and models illustrate space charge limited photo-current as the mechanism of charge transport at moderate voltage bias. The stable assembly and high speed are achieved. The frequency response with a loading of 10 pF and 9 M Omega shows a half power frequency of 100 Hz. (C) 2015 The Electrochemical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface of mild steel was modified by generating cetyl-trimethyl ammonium bromide (CTAB) self-assembled monolayer (SAM) to enhance the corrosion resistance property. The experimental parameters (pH and time) for SAM generation were optimized. The modified surface was characterized by infrared reflection absorption spectroscopy (IRRAS) and contact angle measurements. The SAM generated in 1 mM solution of CTAB at pH 2.5 for 2 h showed a regimented monolayer. Polarization and electrochemical impedance spectroscopic (EIS) studies demonstrated a significant enhancement in the corrosion resistance property of the SAM protected steel in both 1 M HCl and 3.5% NaCl solution. The CTAB SAM surface substantially reduced the corrosion rate by approximately 4 times in 1 M HCl and 1.5 times in 3.5% NaCl media as compared to bare steel. Scanning electron microscopy images confirmed the formation of lesser amounts of corrosion products on the SAM protected surface. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stereology, variant distribution and coarsening behavior of semicoherent alpha(hcp) precipitates in a beta(bcc) matrix of a Ti5553 alloy has been analyzed, and a dominant 3-variant cluster has been observed in which the variants are related to each other by an axis-angle pair <<11(2)over bar> 0 >/60 degrees. Shape and spatial distribution independent elastic self and interaction energies for all pairwise and triplet combinations of a have been calculated and it is found that the 3-cluster combination that is experimentally observed most frequently has the lowest energy for the semicoherent state. The coarsening behavior of the delta distribution follows LSW kinetics after an initial transient, and has been modeled by phase field methods. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-arc oxidation (MAO) coatings were prepared on AZ31B magnesium alloy using alkaline silicate electrolyte at different current densities (0.026, 0.046 and 0.067 A/cm(2)). Field Emission Scanning Electron Microscopy (FESEM) analysis of the coating revealed an irregular porous structure with cracked morphology. Compositional analysis carried out for MAO coating showed the presence of almost an equal amount of Mg and 0 (34 wt.%) apart from other elements such as F, Si and AI. The cross-sectional FESEM images clearly portrayed that the MAO coating was dense along with the presence of very few fine pores. The surface roughness (R-a) of the coatings increased with an increase in the current density. Potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were carried out for both the bare and MAO coated AZ31B Mg alloy in 3.5% NaCl solution. The corrosion potential (E-corr) and corrosion current density (i(corr)) values obtained for the bare substrate were -1.49 V and 46 mu A/cm(2), respectively. The coating prepared at 0.046 A/cm(2) exhibited the lowest i(corr) value of 7.79 x 10(-10) A/cm(2) and highest polarization resistance (41.6 M Omega cm(2)) attesting to the better corrosion resistance of the coating compared to other samples. EIS results also indicated almost similar corrosion behavior for the MAO coatings. Mott-Schottky analysis showed n-type and p-type semiconductor behavior for the oxide layer present on the bare magnesium alloy and MAO coatings respectively. (C) 2016 Published by Elsevier B.V.