196 resultados para thermodynamic calculation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equilibrium thermodynamic analysis has been applied to the low-pressure MOCVD process using manganese acetylacetonate as the precursor. ``CVD phase stability diagrams'' have been constructed separately for the processes carried out in argon and oxygen ambient, depicting the compositions of the resulting films as functions of CVD parameters. For the process conduced in argon ambient, the analysis predicts the simultaneous deposition of MnO and elemental carbon in 1: 3 molar proportion, over a range of temperatures. The analysis predicts also that, if CVD is carried out in oxygen ambient, even a very low flow of oxygen leads to the complete absence of carbon in the film deposited oxygen, with greater oxygen flow resulting in the simultaneous deposition of two different manganese oxides under certain conditions. The results of thermodynamic modeling have been verified quantitatively for low-pressure CVD conducted in argon ambient. Indeed, the large excess of carbon in the deposit is found to constitute a MnO/C nanocomposite, the associated cauliflower-like morphology making it a promising candidate for electrode material in supercapacitors. CVD carried out in oxygen flow, under specific conditions, leads to the deposition of more than one manganese oxide, as expected from thermodynamic analysis ( and forming an oxide-oxide nanocomposite). These results together demonstrate that thermodynamic analysis of the MOCVD process can be employed to synthesize thin films in a predictive manner, thus avoiding the inefficient trial-and-error method usually associated with MOCVD process development. The prospect of developing thin films of novel compositions and characteristics in a predictive manner, through the appropriate choice of CVD precursors and process conditions, emerges from the present work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present research describes the modeling of the thermodynamic properties of the liquid Al-Ga-In-As alloys at 1073 and 1173 K, and investigates the solid-liquid equilibria in the systems. The isothermal molar excess free energy function for the liquid alloys is represented in terms of 37 parameters pertaining to six of the constituent binaries, four ternaries and the quaternary interactions in the system. The corresponding solid alloys which consist of AlAs, GaAs and InAs are assumed to be quasi-regular ternary solutions. The solidus and liquidus compositions are calculated at 1073 and 1173 K using the derived values of the partial components for the solid and liquid alloys at equilibrium. They are in good agreement with those of the experimentally determined values available in the literature. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical potentials of CaO in the two-phase fields Fe2O3 + CaFe2O4 and CaFe2O4 + Ca2Fe2O5 of the pseudobinary system CaO - Fe2O3 have been measured in the temperature range from 975 to 1275 K, relative to pure CaO as the reference state, using solid state galvanic cells incorporating single-crystal CaF2 as the solid electrolyte. The cell was operated under pure oxygen at ambient pressure. The standard Gibbs energies of formation of calcium ferrites, CaFe2O4 and Ca2Fe2O5, were derived from the reversible emfs. The results can be summarized by the following equations:CaO + Fe2O3 --> CaFe2O4;Delta G degrees = - 37,480 + 1.16 T (+/- 250) J/mol 2 CaO + Fe2O3 --> Ca2Fe2O5;Delta G degrees = - 45, 280 - 13.51 T (+/- 275) J/mol These values are compared with thermodynamic data reported in the literature. The results of this study are in excellent agreement with heat capacity data, and in reasonable agreement with earlier measurements of enthalpy and Gibbs energy of formation, but suggest significant revision of enthalpies of formation of calcium ferrites given in current thermodynamic compilations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new method for evaluating the adsorbed phase volume during physisorption of several gases on activated carbon specimens. We treat the adsorbed phase as another equilibrium phase which satisfies the Gibbs equation and hence assume that the law of rectilinear diameters is applicable. Since invariably the bulk gas phase densities are known along measured isotherms, the constants of the adsorbed phase volume can be regressed from the experimental data. We take the Dubinin-Astakhov isotherm as the model for verifying our hypothesis since it is one of the few equations that accounts for adsorbed phase volume changes. In addition, the pseudo-saturation pressure in the supercritical region is calculated by letting the index of the temperature term in Dubinin's equation to be temperature dependent. Based on over 50 combinations of activated carbons and adsorbates (nitrogen, oxygen, argon, carbon dioxide, hydrocarbons and halocarbon refrigerants) it is observed that the proposed changes fit experimental data quite well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of the wide variety of projected applications of ultrapure nitrides in advanced technologies, there is interest in developing new cost-effective methods of synthesis. Explored in this study is the use of ammonia and hydrazine for the synthesis of nitrides from oxides, sulfides and chlorides. Even when the standard Gibbs energy change for the nitridation reactions involved are moderately positive, the reaction can be made to proceed by lowering the partial pressure of the product gas below its equilibrium value. Use of a metastable form of precursor in the nanometric size range is an alternative method to facilitate nitridation. Ellingham-Richardson-Jeffes diagrams are used for a panoramic presentation of the driving force for each set of reactions as a function of temperature. Oxides are the least promising precursors for nitride synthesis; sulfides offer a larger synthetic window for many useful nitrides such as BN, AlN, InN, VN, TiN, ThN and Si3N4. The standard Gibbs free energy changes for reactions involving chlorides with either ammonia or hydrazine are much more negative. Hydrazine is a more powerful nitriding agent than ammonia. The metastability of hydrazine requires that it be introduced into a reactor through a water-cooled lance. The use of volatile halides with ammonia or hydrazine offers the potential for synthesis of pure and doped nanocrystalline nitrides. Nitride thin films can also be prepared by suitable adaptations of the chloride route. (C) 2002 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on the phase relations in the system Nd-Mn-O at 1223 K showed two stable ternary compounds, NdMnO3 and NdMn2O5. An isothermal section of the ternary phase diagram for the system Nd-Mn-O was constructed based on phase analysis of samples quenched after equilibration using XRPD and EDS. An advanced version of the solid-state cell incorporating a buffer electrode was used to determine the Gibbs energies of decomposition of NdMnO3 and NdMn2O5 in the temperature range from 925 to 1400 K. Pure oxygen gas at 0.1 MPa was used as the reference electrode, and yttria-stabilized zirconia as the solid electrolyte. The buffer electrode was designed to prevent polarization of the three-phase electrode and ensure accurate data. The measured oxygen potential corresponding to the reaction,2 Nd2O3 + 4 MnO + O-2 --> 4 NdMnO3 can be represented by the equation,Amu(o2) / J.mol(-1) (+/-580) = -523 960 + 170.96 (T/K)Similarly, for the formation of NdMn2O5 according to the reaction,3 NdMnO3 + Mn3O4 + O-2 --> 3 NdMn2O5 Amu(o2) / J.mol(-1) (+/-660) = - 269 390 + 181.74 (T/K) (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isothermal sections of the phase diagrams for the systems Ln-Pd-O (Ln = lanthanide element) at 1223 K indicate the presence of two inter-oxide compounds Ln(4)PdO(7) and Ln(2)Pd(2)O(5) for Ln = La, Pr, Nd, Sm, three compounds Ln(4)PdO(7), Ln(2)PdO(4) and Ln(2)Pd(2)O(5) for Ln = Eu, Gd and only one compound of Ln(2)Pd(2)O(5) for Ln = Tb to Ho. The lattice parameters of the compounds Ln(4)PdO(7), Ln(2)PdO(4) and Ln(2)Pd(2)O(5) show systematic nonlinear variation with atomic number. The unit cell volumes decrease with increasing atomic number. The standard Gibbs energies, enthalpies and entropies of formation of the ternary oxides from their component binary oxides (Ln(2)O(3) and PdO) have been measured recently using an advanced version of the solid-state electrochemical cell. The Gibbs energies and enthalpies of formation become less negative with increasing atomic number of Ln. For all the three compounds, the variation in Gibbs energy and enthalpy of formation with atomic number is markedly non-linear. The decrease in stability with atomic number is most pronounced for Ln(2)Pd(2)O(5), followed by Ln(4)PdO(7) and Ln(2)PdO(4). This is probably related to the repulsion between Pd2+ ions on the opposite phases Of O-8 cubes in Ln(2)Pd(2)O(5), and the presence of Ln-filled O-8 cubes that share three faces with each other in Ln4PdO7. The values for entropy of formation of all the ternary oxides from their component binary oxides are relatively small. Although the entropies of formation show some scatter, the average value for Ln = La, Pr, Nd is more negative than the average value for the other lanthanide elements. From this difference, an average value for the structure transformation entropy of Ln(2)O(3) from C-type to A-type is estimated as 0.87 J.mol(-1).K-1. The standard Gibbs energies of formation of these ternary oxides from elements at 1223 K are presented as a function of lanthanide atomic number. By invoking the Neumann-Kopp rule for heat capacity, thermodynamic properties of the inter-oxide compounds at 298.15 K are estimated. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enthalpy increments and the standard molar Gibbs energies of formation-of DyFeO3(s) and Dy3Fe5O12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A co-operative phase transition, related to anti-ferromagnetic to paramagnetic transformation, is apparent. from the heat capacity data for DyFeO3 at similar to 648 K. A similar type of phase transition has been observed for Dy3Fe5O12 at similar to 560 K which is related to ferrimagnetic to paramagnetic transformation. Enthalpy increment data for DyFeO3(s) and Dy3Fe5O12(s), except in the vicinity of the second-order transition, can be represented by the following polynomial expressions:{H(0)m(T) - H(0)m(298.15 K)) (Jmol(-1)) (+/-1.1%) = -52754 + 142.9 x (T (K)) + 2.48 x 10(-3) x (T (K))(2) + 2.951 x 10(6) x (T (K))(-1); (298.15 less than or equal to T (K) less than or equal to 1000) for DyFeO3(s), and {H(0)m(T) - H(0)m(298.15 K)} (Jmol(-1)) (+/-1.2%) = -191048 + 545.0 x (T - (K)) + 2.0 x 10(-5) x (T (K))(2) + 8.513 x 10(6) x (T (K))(-1); (208.15 less than or equal to T (K) less than or equal to 1000)for Dy3Fe5O12(s). The reversible emfs of the solid-state electrochemical cells: (-)Pt/{DyFeO3(s) + Dy2O3(s) + Fe(s)}/YDT/CSZ//{Fe(s) + Fe0.95O(s)}/Pt(+) and (-)Pt/{Fe(s) + Fe0.95O(s)}//CSZ//{DyFeO3(s) + Dy3Fe5O12(s) + Fe3O4(s)}/Pt(+), were measured in the temperature range from 1021 to 1250 K and 1035 to 1250 K, respectively. The standard Gibbs energies of formation of solid DyFeO3 and Dy3Fe5O12 calculated by the least squares regression analysis of the data obtained in the present study, and data for Fe0.95O and Dy2O3 from the literature, are given by Delta(f)G(0)m(DyFeO3,s)(kJmol(-1))(+/-3.2)= -1339.9 + 0.2473 x (T(K)); (1021 less than or equal to T (K) less than or equal to 1548)and D(f)G(0)m(Dy3Fe5O12,s) (kJmol(-1)) (+/-3.5) = -4850.4 + 0.9846 x (T (K)); (1035 less than or equal to T (K) less than or equal to 1250) The uncertainty estimates for Delta(f)G(0)m include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagram and chemical potential diagrams for the system Dy-Fe-O were developed at 1250 K. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple thermodynamic analysis of the well-known Michaelis-Menten equation (MME) of enzyme catalysis is proposed that employs the chemical potential mu to follow the Gibbs free energy changes attending the formation of the enzyme-substrate complex and its turnover to the product. The main conclusion from the above analysis is that low values of the Michaelis constant KM and high values of the turnover number k(cat) are advantageous: this supports a simple algebraic analysis of the MME, although at variance with current thinking. Available data apparently support the above findings. It is argued that transition state stabilisation - rather than substrate distortion or proximity - is the key to enzyme catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equilibrium concentrations of various condensed and gaseous phases have been thermodynamically calculated, using the free energy minimization criterion, for the metalorganic chemical vapour deposition (MOCVD) of copper films using bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) as the precursor material. From among the many chemical species that may possibly result from the CVD process, only those expected on the basis of mass spectrometric analysis and chemical reasoning to be present at equilibrium, under different CVD conditions, are used in the thermodynamic calculations. The study predicts the deposition of pure, carbon-free copper in the inert atmosphere of argon as well as in the reactive hydrogen atmosphere, over a wide range of substrate temperatures and total reactor pressures. Thin films of copper, grown on SiO2/Si(100) substrates from this metalorganic precursor by low pressure CVD have been characterized by XRD and AES. The experimentally determined composition of CVD-grown copper films is in reasonable agreement with that predicted by thermodynamic analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enthalpy increments and the standard molar Gibbs energy of formation of NdFeO3(s) have been measured using a hightemperature Calvet microcalorimeter and a solid oxide galvanic cell, respectively. A lambda-type transition, related to magnetic order-disorder transformation (antiferromagnetic to paramagnetic), is apparent from the heat capacity data at similar to 687 K. Enthalpy increments, except in the vicinity of transition, can be represented by a polynomial expression: {Hdegrees(m)(T)-Hdegrees(m) (298.15 K)} /J(.)mol(-1) (+/- 0.7%)=-53625.6+146.0(T/K) +1.150 X 10(-4)(T/K)(2) +3.007 x 10(6)(T/K)(-1); (298.15 less than or equal to T/K less than or equal to 1000). The heat capacity, the first differential of {Hdegrees(m)(T)-Hdegrees(m)(298.15 K)}with respect to temperature, is given by Cdegrees(pm)/J(.)K(-1.)mol(-1)=146.0+ 2.30x10(-4) (T/K) - 3.007 X 10(6)(T/K)(-2). The reversible emf's of the cell, (-) Pt/{NdFeO3(s) +Nd2O3(s)+Fe(s)}//YDT/CSZ// Fe(s)+'FeO'(s)}/Pt(+), were measured in the temperature range from 1004 to 1208 K. It can be represented within experimental error by a linear equation: E/V=(0.1418 +/- 0.0003)-(3.890 +/- 0.023) x 10(-5)(T/K). The Gibbs energy of formation of solid NdFeO, calculated by the least-squares regression analysis of the data obtained in the present study, and data for Fe0.95O and Nd2O3 from the literature, is given by Delta(f)Gdegrees(m)(NdFeO3 s)/kJ (.) mol(-1)( +/- 2.0)=1345.9+0.2542(T/K); (1000 less than or equal to T/K less than or equal to 1650). The error in Delta(f)Gdegrees(m)(NdFeO3, s, T) includes the standard deviation in emf and the uncertainty in the data taken from the literature. Values of Delta(f)Hdegrees(m)(NdFeO3, s, 298.15 K) and Sdegrees(m) (NdFeO3 s, 298.15 K) calculated by the second law method are - 1362.5 (+/-6) kJ (.) mol(-1) and 123.9 (+/-2.5) J (.) K-1 (.) mol(-1), respectively. Based on the thermodynamic information, an oxygen potential diagram for the system Nd-Fe-O was developed at 1350 K. (C) 2002 Elsevier Science (USA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to present exergy charts for carbon dioxide (CO2) based on the new fundamental equation of state and the results of a thermodynamic analysis of conventional and trans-critical vapour compression refrigeration cycles using the data thereof. The calculation scheme is anchored on the Mathematica platform. There exist upper and lower bounds for the high cycle pressure for a given set of evaporating and pre-throttling temperatures. The maximum possible exergetic efficiency for each case was determined. Empirical correlations for exergetic efficiency and COP, valid in the range of temperatures studied here, are obtained. The exergy losses have been quantified. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enthalpy increments and the standard molar Gibbs energy (G) of formation of SmFeO3(S) and SM3Fe5O12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A X-type transition, related to magnetic order-disorder transformation (antiferromagnetic to paramagnetic), is apparent from the heat capacity data at similar to673 K for SmFeO3(s) and at similar to560 K for Sm3Fe5O12(S). Enthalpy increment data for SmFeO3(s) and SM3Fe5O12(s), except in the vicinity of X-transition, can be represented by the following polynomial expressions: {H-m(0)(T) - H-m(0)(298.15 K){/J mol-(1)(+/-1.2%) = -54 532.8 + 147.4 . (T/K) + 1.2 . 10(-4) . (T/K)(2) +3.154 . 10(6) . (T/K)(-1); (298.15 less than or equal to T/K less than or equal to 1000) for SmFeO3(s), and {H-m(0)(T) - H-m(0)(298.15 K)}/J mol(-1) (+/-1.4%) = -192 763 + 554.7 . (T/K) + 2.0 . 10(-6) . (T/K)(2) + 8.161 . 10(6) - (T/K)(-1); (298.15 less than or equal to T/K less than or equal to 1000) for Sm3Fe5O12(s). The reversible emf of the solid-state electrochemical cells, (-)Pt/{SmFeO3(s) + Sm2O3(S) + Fe(s)) // YDT / CSZ // {Fe(s) + Fe0.95O(s)} / Pt(+) and (-)Pt/{Fe(s) + Fe0.95O(S)} // CSZ // {SmFeO3(s) + Sm3Fe5O12(s) + Fe3O4(s) / Pt(+), were measured in the temperature ranges of 1005-1259 K and 1030-1252 K, respectively. The standard molar G of formation of solid SmFeO3 and Sm3Fe5O12 calculated by the least squares regression analysis of the data obtained in the current study, and data for Fe0.95O and Sm2O3 from the literature, are given by: Delta(f)G(m)(0)(SmFeO3, s)/kj . mol(-1)(+/-2.0) = -1355.2 + 0.2643 . ; (1005 less than or equal to T/K less than or equal to 1570) and Delta(f)G(m)(0)(Sm3Fe5O12, s)/kj . mol(-1) (+/- 3.1) = -4891.0 + 1.0312 . (T/K); (1030 less than or equal to T/K less than or equal to 1252) The uncertainty estimates for Delta(f)G(m)(0) include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on these thermodynamic data, the oxygen potential diagram for the system Sm-Fe-O was constructed at 1250 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We find that at low temperature water, large amplitude (similar to 60 degrees) rotational jumps propagate like a string, with the length of propagation increasing with lowering temperature. The strings are formed by mobile 5-coordinated water molecules which move like a Glarum defect (J. Chem. Phys., 1960, 33, 1371), causing water molecules on the path to change from 4-coordinated to 5-coordinated and again back to 4-coordinated water, and in the process cause the tagged water molecule to jump, by following essentially the Laage-Hynes mechanism (Science, 2006, 311, 832-835). The effects on relaxation of the propagating defect causing large amplitude jumps are manifested most dramatically in the mean square displacement (MSD) and also in the rotational time correlation function of the O-H bond of the molecule that is visited by the defect (transient transition to the 5-coordinated state). The MSD and the decay of rotational time correlation function, both remain quenched in the absence of any visit by the defect, as postulated by Glarum long time ago. We establish a direct connection between these propagating events and the known thermodynamic and dynamic anomalies in supercooled water. These strings are found largely in the regions that surround the relatively rigid domains of 4-coordinated water molecules. The propagating strings give rise to a noticeable dynamical heterogeneity, quantified here by a sharp rise in the peak of the four-point density response function, chi(4)(t). This dynamics heterogeneity is also responsible for the breakdown of the Stokes-Einstein relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sonic boom at a large distance from its source consists of a leading shock, a trailing shock and a one parameter family of nonlinear wavefronts in between these shocks. A new ray theoretical method using a shock ray theory and a weakly nonlinear lay theory has been used to obtain the shock fronts and wavefronts respectively, for a maneuvering aerofoil in a homogeneous medium. This method introduces a one parameter family of Cauchy problems to calculate the shock and wave fronts emerging from the surface of the aerofoil. These problems are solved numerically to obtain the leading shock front and the nonlinear wavefronts emerging from the front portion of the aerofoil.