111 resultados para sulfur dioxide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss here a semiconductors assembly comprising of titanium dioxide (TiO2) rods sensitized by cadmium sulfide (CdS) nanocrystals for potential applications in large area electronics on three dimensional (3-D) substrates. Vertically aligned TiO2 rods are grown on a substrate using a 150 degrees C process flow and then sensitized with CdS by SILAR method at room temperature. This structure forms an effective photoconductor as the photo-generated electrons are rapidly removed from the CdS via the TiO2 thereby permitting a hole rich CdS. Current-voltage characteristics are measured and models illustrate space charge limited photo-current as the mechanism of charge transport at moderate voltage bias. The stable assembly and high speed are achieved. The frequency response with a loading of 10 pF and 9 M Omega shows a half power frequency of 100 Hz. (C) 2015 The Electrochemical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubilities of 10-undecenoic acid and geraniol in supercritical carbon dioxide were measured at 308, 313,323 and 333K, and at pressures of 10-18 MPa. Solubilities (in mole fraction),ranged from 0.4 x 10(-3) to 17.4 x 10(-3) for 10-undecenoic acid and 2.7 x 10(-3) to 25 x 10(-3) for geraniol, respectively. The AARD was around 11% and 5% for these models for 10-undecenoic acid and geraniol, respectively. The solubilities of both compounds showed retrograde behavior wherein the solubilities decrease with temperature at isobaric conditions. The solubility of geraniol was higher than 10-undecenoic acid at all investigated temperatures and pressures. The data were found to be self consistent based on the Mendez-Santiago model. New models based on association theory using van Laar and Margules activity coefficient models for solute in liquid phase were derived, and used to correlate the solubilities. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of effective therapies to eradicate persistent, slowly replicating M. tuberculosis (Mtb) represents a significant challenge to controlling the global TB epidemic. To develop such therapies, it is imperative to translate information from metabolome and proteome adaptations of persistent Mtb into the drug discovery screening platforms. To this end, reductive sulfur metabolism is genetically and pharmacologically implicated in survival, pathogenesis, and redox homeostasis of persistent Mtb. Therefore, inhibitors of this pathway are expected to serve as powerful tools in its preclinical and clinical validation as a therapeutic target for eradicating persisters. Here, we establish a first functional HTS platform for identification of APS reductase (APSR) inhibitors, a critical enzyme in the assimilation of sulfate for the biosynthesis of cysteine and other essential sulfur-containing molecules. Our HTS campaign involving 38?350 compounds led to the discovery of three distinct structural classes of APSR inhibitors. A class of bioactive compounds with known pharmacology displayed potent bactericidal activity in wild-type Mtb as well as MDR and XDR clinical isolates. Top compounds showed markedly diminished potency in a conditional Delta APSR mutant, which could be restored by complementation with Mtb APSR. Furthermore, ITC studies on representative compounds provided evidence for direct engagement of the APSR target. Finally, potent APSR inhibitors significantly decreased the cellular levels of key reduced sulfur-containing metabolites and also induced an oxidative shift in mycothiol redox potential of live Mtb, thus providing functional validation of our screening data. In summary, we have identified first-in-class inhibitors of APSR that can serve as molecular probes in unraveling the links between Mtb persistence, antibiotic tolerance, and sulfate assimilation, in addition to their potential therapeutic value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubilities of two lipid derivatives, geranyl butyrate and 10-undecen-1-ol, in SCCO2 (supercritical carbon dioxide) were measured at different operating conditions of temperature (308.15 to 333.15 K) and pressure (10 to 18 MPa). The solubilities (in mole fraction) ranged from 2.1 x 10(-3) to 23.2 x 10(-3) for geranyl butyrate and 2.2 x 10(-3) to 25.0 x 10(-3) for 10-undecen-1-ol, respectively. The solubility data showed a retrograde behavior in the pressure and temperature range investigated. Various combinations of association and solution theory along with different activity coefficient models were developed. The experimental data for the solubilities of 21 liquid solutes along with geranyl butyrate and 10-undecen-1-ol were correlated using both the newly derived models and the existing models. The average deviation of the correlation of the new models was below 15%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium oxide (Titania) thin films were synthesized on different substrates via the sol-gel dip-coating method using alkoxide solution. Some selected samples were also prepared with different percentage of Lead (Pb). The influence of Pb addition in precursor sol on the optical properties of titanium dioxide thin films was studied. The optical transmittance in the visible region has increased with increase in weight percentage of lead. The refractive index was slightly decreased with Pb addition. Crystallization of these coatings was achieved through thermal annealing at temperatures above 400 degrees C. The structural properties and surface morphology of the crystallized coatings were studied by Scanning Electron Microscopy. Increase in average grain size from 250 nm to 350 nm with increase in Pb concentration is observed. Films were appeared to more coarse with increase in Pb addition. An increase in Pb addition resulted increase in average roughness from 12 nm to 25 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper establishes the design requirements for the development and testing of direct supercritical carbon dioxide (sCO2) solar receivers. Current design considerations are based on the ASME Boiler and Pressure Vessel Code (BPVC). Section I (BPVC) considers typical boilers/superheaters (i.e. fired pressure vessels) which work under a constant low heat flux. Section VIII (BPVC) considers pressure vessels with operating pressures above 15 psig 2 bar] (i.e. unfired pressure vessels). Section III, Division I - Subsection NH (BPVC) considers a more detailed stress calculation, compared to Section I and Section VIII, and requires a creep-fatigue analysis. The main drawback from using the BPVC exclusively is the large safety requirements developed for nuclear power applications. As a result, a new set of requirements is needed to perform detailed thermal-structural analyses of solar thermal receivers subjected to a spatially-varying, high-intensity heat flux. The last design requirements document of this kind was an interim Sandia report developed in 1979 (SAND79-8183), but it only addresses some of the technical challenges in early-stage steam and molten-salt solar receivers but not the use of sCO2 receivers. This paper presents a combination of the ASME BPVC and ASME B31.1 Code modified appropriately to achieve the reliability requirements in sCO(2) solar power systems. There are five main categories in this requirements document: Operation and Safety, Materials and Manufacturing, Instrumentation, Maintenance and Environmental, and General requirements. This paper also includes the modeling guidelines and input parameters required in computational fluid dynamics and structural analyses utilizing ANSYS Fluent, ANSYS Mechanical, and nCode Design Life. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of sCO(2) receivers.