329 resultados para stomatitis under dentures
Resumo:
An analysis has been carried out of the genesis and character of growth dislocations present in all growth sectors of single crystals of potash alum. The crystals, grown from seeded solutions by the temperature lowering method under conditions of low supersaturation, presented the well-developed forms: {111} dominant, {100} and {110}. Growth dislocations formed predominately during refacetting of the edges and corners of the seed, rounded during preparation and insertion into the supersaturated solution. From here they become refracted into the {111} sectors which proved to be the most defective. Smaller numbers of dislocations form at the {111}, {100} and {110} seed interfaces and propagate in these sectors. In crystals of inferior quality, a number of inclusions were found predominantly in the fast growing {100} sectors which become the source of additional dislocations. Dislocations present in the original seed did not propagate across the interface into the developing crystal. Dislocations of all characters were observed. The principal Burgers vectors were found to be left angle bracket100right-pointing angle bracket, left angle bracket110right-pointing angle bracket and left angle bracket111right-pointing angle bracket.
Resumo:
This paper reports on the numerical study of the linear stability of laminar premixed flames under zero gravity. The study specifically addresses the dependence of stability on finite rate chemistry with low activation energy and variable thermodynamic and transport properties. The calculations show that activation energy and details of chemistry play a minor role in altering the linear neutral stability results from asymptotic analysis. Variable specific heat makes a marginal change to the stability. Variable transport properties on the other hand tend to substantially enhance the stability from critical wave number of about 0.5 to 0.20. Also, it appears that the effects of variable properties tend to nullify the effects of non-unity Lewis number. When the Lewis number of a single species is different from unity, as will happen in a hydrogen-air premixed flame, the stability results remain close to that of unity Lewis number.
Resumo:
Many wormlike micellar systems exhibit appreciable shear thinning due to shear-induced alignment. As the micelles get aligned introducing directionality in the system, the viscoelastic properties are no longer expected to be isotropic. An optical-tweezers-based active microrheology technique enables us to probe the out-of-equilibrium rheological properties of a wormlike micellar system simultaneously along two orthogonal directions-parallel to the applied shear, as well as perpendicular to it. While the displacements of a trapped bead in response to active drag force carry signature of conventional shear thinning, its spontaneous position fluctuations along the perpendicular direction manifest an orthogonal shear thickening, an effect hitherto unobserved. Copyright (C) EPLA, 2010
Resumo:
In this paper, dynamic response of an infinitely long beam resting on a foundation of finite depth, under a moving force is studied. The effect of foundation inertia is included in the analysis by modelling the foundation as a series of closely spaced axially vibrating rods of finite depth, fixed at the bottom and connected to the beam at the top. Viscous damping in the beam and foundation is included in the analysis. Steady state response of the beam-foundation system is obtained. Detailed numerical results are presented to study the effect of various parameters such as foundation mass, velocity of the moving load, damping and axial force on the beam. It is shown that foundation inertia can considerably reduce the critical velocity and can also amplify the beam response.
Resumo:
Cylindrical specimens of commercial pure titanium have been compressed at strain rates in the range of 0.1 to 100 s-1 and temperatures in the range of 25-degrees-C to 400-degrees-C. At strain rates of 10 and 100 s-1, the specimens exhibited adiabatic shear bands. At lower strain rates, the material deformed in an inhomogeneous fashion. These material-related instabilities are examined in the light of the ''phenomenological model'' and the ''dynamic materials mode.'' It is found that the regime of adiabatic shear band formation is predicted by the phenomenological model, while the dynamic materials model is able to predict the inhomogeneous deformation zone. The criterion based on power partitioning is competent to predict the variations within the inhomogeneous deformation zone.
Resumo:
Unsteady laminar mixed convection flow (combined free and forced convection flow) along a vertical slender cylinder embedded in a porous medium under the combined buoyancy effect of thermal and species diffusion has been studied. The effect of the permeability of the medium as well as the magnetic field has been included in the analysis. The partial differential equations with three independent variables governing the flow have been solved numerically using a implicit finite difference scheme in combination with the quasilinearization technique. Computations have been carried out for accelerating, decelerating and oscillatory free stream velocity distributions. The effects of the permeability of the medium, buoyancy forces, transverse curvature and magnetic field on skin friction, heat transfer and mass transfer have been studied. It is found that the effect of free stream velocity distribution is more pronounced on the skin friction than on the heat and mass transfer. The permeability and magnetic parameters increase the skin friction, but reduce the heat and mass transfer. The skin friction, heat transfer and mass transfer are enhanced due to the buoyancy forces and curvature parameter. The heat transfer is strongly dependent on the viscous dissipation parameter and the Prandtl number, and the mass transfer on the Schmidt number. Untersucht wurde die instationäre laminare Mischkonvektion längs eines vertikalen, in einem porösen Medium eingebetteten Zylinders unter kombinierten Auftriebseffekten von thermischer und spezieller Diffusion. Der Einfluß der Permeabilität des Mediums sowie des magnetischen Feldes wurden in die Betrachtung einbezogen. Die partiellen Differentialgleichungen mit drei unabhängigen Variablen, welche die Strömung beschreiben, wurde numerisch anhand des Schemas der endlichen Differenzen in Verbindung mit der Technik der Quasilinearisation gelöst. Berechnungen für die beschleunigte, verzögerte und oszillierende Geschwindigkeitsverteilung der freien Strömung sind durchgeführt worden. Untersucht wurden ebenfalls die Effekte der Permeabilität des Mediums, der Auftriebskräfte, der transversalen Krümmung, des magnetischen Feldes auf die Oberflächenreibung sowie die Wärmeund Stoffübertragung. Es wurde festgestellt, daß die Geschwindigkeit mehr Einfluß auf die Oberflächenreibung als auf die Wärmeund Stoffübertragung hat. Die Oberflächenreibung sowie die Wärme- und Stoffübertragung werden durch die Auftriebskräfte und die Krümmungsparameter verbessert. Die Wärmeübertragung ist stark abhängig von den Parametern der viskosen Dissipation und der Prandtl-Zahl; die Stoffübertragung von der Schmidt-Zahl.
Resumo:
We analyze theoretically the phenomenon of electromagnetically induced transparency (UT) under conditions where the probe laser is not in the usual weak limit. We consider the effects in both three-level and four-level systems, which are either closed or open (due to losses to an external metastable level). We find that the EIT dip almost disappears in a closed three-level system but survives in an open system. In four-level systems, there is a narrow enhanced-absorption peak (EITA) at line center, which has applications as an optical clock. The peak converts to an EIT dip in a closed system, but again survives in an open system. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Electrochemical reduction of exfoliated graphene oxide, prepared from pre-exfoliated graphite, in acetamide-urea-ammonium nitrate ternary eutectic melt results in few layer-graphene thin films. Negatively charged exfoliated graphene oxide is attached to positively charged cystamine monolyer self-assembled on a gold surface. Electrochemical reduction of the oriented graphene oxide film is carried out in a room temperature, ternary molten electrolyte. The reduced film is characterized by atomic force microscopy (AFM), conductive AFM, Fourier-transform infrared spectroscopy and Raman spectroscopy. Ternary eutectic melt is found to be a suitable medium for the regulated reduction of graphene oxide to reduced graphene oxide-based sheets on conducting surfaces. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
With construction of a thermochemical energy conversion prototype system to store solar heat, thermal dissociation of pellets of Ca(OH)2 and hydration of CaO have been investigated in some detail for its application to the system. The inorganic substance is very attractive as a material for long term heat storage, but molar density changes associated with the reaction are fairly large. Therefore, this factor has been taken into account in the kinetic equation. The importance of additives and pellet size has been discussed considering reactivity and strength of pellets. An analysis has been attempted when chemical reaction is important. The deformation of pellets was observed during hydration.
Resumo:
Semiconductor based nanoscale heterostructures are promising candidates for photocatalytic and photovoltaic applications with the sensitization of a wide bandgap semiconductor with a narrow bandgap material being the most viable strategy to maximize the utilization of the solar spectrum. Here, we present a simple wet chemical route to obtain nanoscale heterostructures of ZnO/CdS without using any molecular linker. Our method involves the nucleation of a Cd-precursor on ZnO nanorods with a subsequent sulfidation step leading to the formation of the ZnO/CdS nanoscale heterostructures. Excellent control over the loading of CdS and the microstructure is realized by merely changing the initial concentration of the sulfiding agent. We show that the heterostructures with the lowest CdS loading exhibit an exceptionally high activity for the degradation of methylene blue (MB) under solar irradiation conditions; microstructural and surface analysis reveals that the higher activity in this case is related to the dispersion of the CdS nanoparticles on the ZnO nanorod surface and to the higher concentration of surface hydroxyl species. Detailed analysis of the mechanism of formation of the nanoscale heterostructures reveals that it is possible to obtain deterministic control over the nature of the interfaces. Our synthesis method is general and applicable for other heterostructures where the interfaces need to be engineered for optimal properties. In particular, the absence of any molecular linker at the interface makes our method appealing for photovoltaic applications where faster rates of electron transfer at the heterojunctions are highly desirable.
Resumo:
Convolutional network-error correcting codes (CNECCs) are known to provide error correcting capability in acyclic instantaneous networks within the network coding paradigm under small field size conditions. In this work, we investigate the performance of CNECCs under the error model of the network where the edges are assumed to be statistically independent binary symmetric channels, each with the same probability of error pe(0 <= p(e) < 0.5). We obtain bounds on the performance of such CNECCs based on a modified generating function (the transfer function) of the CNECCs. For a given network, we derive a mathematical condition on how small p(e) should be so that only single edge network-errors need to be accounted for, thus reducing the complexity of evaluating the probability of error of any CNECC. Simulations indicate that convolutional codes are required to possess different properties to achieve good performance in low p(e) and high p(e) regimes. For the low p(e) regime, convolutional codes with good distance properties show good performance. For the high p(e) regime, convolutional codes that have a good slope ( the minimum normalized cycle weight) are seen to be good. We derive a lower bound on the slope of any rate b/c convolutional code with a certain degree.
Resumo:
A simple one dimensional inertial model is presented for transient response analysis of notched beams under impact, and extracting dynamic initiation toughness values. The model includes the effects of striker mass interactions, and contact deformations of the beam. Displacement time history of the striker mass is applied to the model as forcing function. The model is validated by comparison with the experimental investigation on ductile aluminium 6061 alloy and brittle polymer, PMMA.
Resumo:
The unsteady free convection boundary layer at the stagnation point of a two-dimensional body and an axisymmetric body with prescribed surface heat flux or temperature has been studied. The magnetic field is applied parallel to the surface and the effect of induced magnetic field has been considered. It is found that for certain powerlaw distribution of surface heat flux or temperature and magnetic field with time, the governing boundary layer equations admit a self-similar solution locally. The resulting nonlinear ordinary differential equations have been solved using a finite element method and a shooting method with Newton's corrections for missing initial conditions. The results show that the skin friction and heat transfer coefficients, and x-component of the induced magnetic field on the surface increase with the applied magnetic field. In general, the skin friction, heat transfer and x-component of the induced magnetic field for axisymmetric case are more than those of the two-dimensional case. Also they change more when the surface heat flux or temperature decreases with time than when it increases with time. The skin friction, heat transfer and x-component of the induced magnetic field are significantly affected by the magnetic Prandtl number and they increase as the magnetic Prandtl number decreases. The skin friction and x-component of the magnetic field increase with the dissipation parameter, but heat transfer decreases.
Resumo:
Our ability to infer the protein quaternary structure automatically from atom and lattice information is inadequate, especially for weak complexes, and heteromeric quaternary structures. Several approaches exist, but they have limited performance. Here, we present a new scheme to infer protein quaternary structure from lattice and protein information, with all-around coverage for strong, weak and very weak affinity homomeric and heteromeric complexes. The scheme combines naive Bayes classifier and point group symmetry under Boolean framework to detect quaternary structures in crystal lattice. It consistently produces >= 90% coverage across diverse benchmarking data sets, including a notably superior 95% coverage for recognition heteromeric complexes, compared with 53% on the same data set by current state-of-the-art method. The detailed study of a limited number of prediction-failed cases offers interesting insights into the intriguing nature of protein contacts in lattice. The findings have implications for accurate inference of quaternary states of proteins, especially weak affinity complexes.