235 resultados para spatial prediction
Resumo:
Experiments were conducted on the oxygen transfer coefficient, k(L)a(20), through surface aeration in geometrically similar square tanks, with a rotor of diameter D fitted with six flat blades. An optimal geometric similarity of various linear dimensions, which produced maximum k(L)a(20) for any rotational speed of rotor N by an earlier study, was maintained. A simulation equation uniquely correlating k = k(L)a(20)(nu/g(2))(1/3) (nu and g are kinematic viscosity of water and gravitational constant, respectively), and a parameter governing the theoretical power per unit volume, X = (ND2)-D-3/(g(4/3)nu(1/3)), is developed. Such a simulation equation can be used to predict maximum k for any N in any size of such geometrically similar square tanks. An example illustrating the application of results is presented. Also, it has been established that neither the Reynolds criterion nor the Froude criterion is singularly valid to simulate either k or K = k(L)a(20)/N, simultaneously in all the sizes of tanks, even through they are geometrically similar. Occurrence of "scale effects" due to the Reynolds and the Froude laws of similitude on both k and K are also evaluated.
Resumo:
Several doped 6H hexagonal ruthenates, having the general formula Ba3MRu2O9, have been studied over a significant period of time to understand the unusual magnetism of ruthenium metal. However, among them, the M = Fe compound appears different since it is observed that unlike others, the 3d Fe ions and 4d Ru ions can easily exchange their crystallographic positions, and as a result many possible magnetic interactions become realizable. The present study involving several experimental methods on this compound establishes that the magnetic structure of Ba3FeRu2O9 is indeed very different from all other 6H ruthenates. Local structural study reveals that the possible Fe/Ru site disorder further extends to create local chemical inhomogeneity, affecting the high-temperature magnetism of this material. There is a gradual decrease of Fe-57 Mossbauer spectral intensity with decreasing temperature (below 100 K), which reveals that there is a large spread in the magnetic ordering temperatures, corresponding to many spatially inhomogeneous regions. However, finally at about 25 K, the whole compound is found to take up a global glasslike magnetic ordering.
Resumo:
The basic characteristic of a chaotic system is its sensitivity to the infinitesimal changes in its initial conditions. A limit to predictability in chaotic system arises mainly due to this sensitivity and also due to the ineffectiveness of the model to reveal the underlying dynamics of the system. In the present study, an attempt is made to quantify these uncertainties involved and thereby improve the predictability by adopting a multivariate nonlinear ensemble prediction. Daily rainfall data of Malaprabha basin, India for the period 1955-2000 is used for the study. It is found to exhibit a low dimensional chaotic nature with the dimension varying from 5 to 7. A multivariate phase space is generated, considering a climate data set of 16 variables. The chaotic nature of each of these variables is confirmed using false nearest neighbor method. The redundancy, if any, of this atmospheric data set is further removed by employing principal component analysis (PCA) method and thereby reducing it to eight principal components (PCs). This multivariate series (rainfall along with eight PCs) is found to exhibit a low dimensional chaotic nature with dimension 10. Nonlinear prediction employing local approximation method is done using univariate series (rainfall alone) and multivariate series for different combinations of embedding dimensions and delay times. The uncertainty in initial conditions is thus addressed by reconstructing the phase space using different combinations of parameters. The ensembles generated from multivariate predictions are found to be better than those from univariate predictions. The uncertainty in predictions is decreased or in other words predictability is increased by adopting multivariate nonlinear ensemble prediction. The restriction on predictability of a chaotic series can thus be altered by quantifying the uncertainty in the initial conditions and also by including other possible variables, which may influence the system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31% for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and 95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our method shows improved prediction capability.
Resumo:
Organic nanoparticles consisting of single conjugated polymer chains were investigated as a function of degree of conjugation by means of single-molecule spectroscopy. The degree of conjugation was synthetically controlled. For highly conjugated chains, singlet excitons are efficiently funneled over nanometer distances to a small number of sites. In contrast, chains with less conjugation and a high number of saturated bonds do not exhibit energy funneling due to a highly disordered conformation.
Resumo:
Fetal lung and liver tissues were examined by ultrasound in 240 subjects during 24 to 38 weeks of gestational age in order to investigate the feasibility of predicting the maturity of the lung from the textural features of sonograms. A region of interest of 64 X 64 pixels is used for extracting textural features. Since the histological properties of the liver are claimed to remain constant with respect to gestational age, features obtained from the lung region are compared with those from liver. Though the mean values of some of the features show a specific trend with respect to gestation age, the variance is too high to guarantee definite prediction of the gestational age. Thus, we restricted our purview to an investigation into the feasibility of fetal lung maturity prediction using statistical textural features. Out of 64 features extracted, those features that are correlated with gestation age and less computationally intensive are selected. The results of our study show that the sonographic features hold some promise in determining whether the fetal lung is mature or immature.
Resumo:
The production of rainfed crops in semi-arid tropics exhibits large variation in response to the variation in seasonal rainfall. There are several farm-level decisions such as the choice of cropping pattern, whether to invest in fertilizers, pesticides etc., the choice of the period for planting, plant population density etc. for which the appropriate choice (associated with maximum production or minimum risk) depends upon the nature of the rainfall variability or the prediction for a specific year. In this paper, we have addressed the problem of identifying the appropriate strategies for cultivation of rainfed groundnut in the Anantapur region in a semi-arid part of the Indian peninsula. The approach developed involves participatory research with active collaboration with farmers, so that the problems with perceived need are addressed with the modern tools and data sets available. Given the large spatial variation of climate and soil, the appropriate strategies are necessarily location specific. With the approach adopted, it is possible to tap the detailed location specific knowledge of the complex rainfed ecosystem and gain an insight into the variety of options of land use and management practices available to each category of stakeholders. We believe such a participatory approach is essential for identifying strategies that have a favourable cost-benefit ratio over the region considered and hence are associated with a high chance of acceptance by the stakeholders. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The impact of realistic representation of sea surface temperature (SST) on the numerical simulation of track and intensity of tropical cyclones formed over the north Indian Ocean is studied using the Weather Research and Forecast (WRF) model. We have selected two intense tropical cyclones formed over the Bay of Bengal for studying the SST impact. Two different sets of SSTs were used in this study: one from TRMM Microwave Imager (TMI) satellite and other is the weekly averaged Reynold's SST analysis from National Center for Environmental Prediction (NCEP). WRF simulations were conducted using the Reynold's and TMI SST as model boundary condition for the two cyclone cases selected. The TMI SST which has a better temporal and spatial resolution showed sharper gradient when compared to the Reynold's SST. The use of TMI SST improved the WRF cyclone intensity prediction when compared to that using Reynold's SST for both the cases studied. The improvements in intensity were mainly due to the improved prediction of surface latent and sensible heat fluxes. The use of TMI SST in place of Reynold's SST improved cyclone track prediction for Orissa super cyclone but slightly degraded track prediction for cyclone Mala. The present modeling study supports the well established notion that the horizontal SST gradient is one of the major driving forces for the intensification and movement of tropical cyclones over the Indian Ocean.
Altitude variation of aerosol properties over the Himalayan range inferred from spatial measurements
Resumo:
Altitude variations of the mass concentration of black carbon, number concentration of composite aerosols are examined along with the columnar spectral aerosol optical depths using state of the art instruments and the Angstrom parameters are inferred from the ground based measurements at several altitude levels, en route from Manora Peak, Nainital (similar to 1950 m above mean sea level) to a low altitude station Haldwani (similar to 330 m above mean sea level) at its foothill within an aerial distance of <10,000 m. The measurements were done during the winter months (November-February) of 2005, 2006 and 2007 under fair weather conditions. The results show a rapid decrease in all the measured parameters with increase in altitude, with >60% contribution to the AOD coming from the regions below 1000 m. The Angstrom wavelength exponent remained high in the well mixed region, and decreased above. The normalized AOD gradient was used to estimate aerosol mixing height, which was found to be in the altitude range 1000-1500 m, above which the particle concentrations are slowly varying as a function of altitude. The heating rate at the surface is found to be maximum but decreases sharply with increase in altitude. Analysis of the wavelength dependence of absorption aerosol optical depth (AAOD) showed that the aerosol absorption over the site is generally due to mixed aerosols. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The applicability of Artificial Neural Networks for predicting the stress-strain response of jointed rocks at varied confining pressures, strength properties and joint properties (frequency, orientation and strength of joints) has been studied in the present paper. The database is formed from the triaxial compression tests on different jointed rocks with different confining pressures and different joint properties reported by various researchers. This input data covers a wide range of rock strengths, varying from very soft to very hard. The network was trained using a 3 layered network with feed forward back propagation algorithm. About 85% of the data was used for training and remaining15% for testing the predicting capabilities of the network. Results from the analyses were very encouraging and demonstrated that the neural network approach is efficient in capturing the complex stress-strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress-strain response of different rocks, whose intact strength vary from 11.32 MPa to 123 MPa and spacing of joints vary from 10 cm to 100 cm for confining pressures ranging from 0 to 13.8 MPa.