259 resultados para slab guided wave
Resumo:
The fluid-flow pattern and residence-time distribution (r.t.d.) of the fluid in a continuous casting mould have been studied using a water model. The two recirculating zones below the discharge ports have been found to be asymmetric. The effect of casting speed, discharge port diameter, shroud well depth and the immersion depth on r.t.d. have been investigated. The r.t.d. curve has been well represented by a model of two backmix cells of equal volume in series. The exist of the fluid has been found to be non-uniform across the cross-section of the mould. The fluid-flow pattern has been observed to change with time in a random fashion. Dead volume of upto 31.8% has been found with smaller discharge ports.
Resumo:
This paper presents a study on the uncertainty in material parameters of wave propagation responses in metallic beam structures. Special effort is made to quantify the effect of uncertainty in the wave propagation responses at high frequencies. Both the modulus of elasticity and the density are considered uncertain. The analysis is performed using a Monte Carlo simulation (MCS) under the spectral finite element method (SEM). The randomness in the material properties is characterized by three different distributions, the normal, Weibull and extreme value distributions. Their effect on wave propagation in beams is investigated. The numerical study shows that the CPU time taken for MCS under SEM is about 48 times less than for MCS under a conventional one-dimensional finite element environment for 50 kHz loading. The numerical results presented investigate effects of material uncertainties on high frequency modes. A study is performed on the usage of different beam theories and their uncertain responses due to dynamic impulse load. These studies show that even for a small coefficient of variation, significant changes in the above parameters are noticed. A number of interesting results are presented, showing the true effects of uncertainty response due to dynamic impulse load.
Resumo:
Consideration is given to a 25-foot long Q-band (8 mm) confocal, zoned dielectric lens beam waveguide. Numerical expressions for the axial and radial fields are presented. The experimental set-up consisted of uniformly spaced zoned dielectric lenses, a transmitting horn and a receiving horn. It was found that: (1) the wave beam is reiterated when confocal, zoned dielectric lenses act as phase transformers in place of smooth surfaced transformers in beam waveguides; (2) the axial field is oscillatory near the source and the oscillation persists for about 25 cm from the source; (3) the oscillation disappears after one lens is used; (4) higher order modes with higher attenuation rates die out faster than fundamental modes; (5) phase transformers do not alter beam modes; (6) without any lens the beam cross-section broadens significantly in the Z-direction; (7) with one lens the beam exhibits the reiteration phenomenon; and (8) inserting a second lens on the axial and cross-sectional field distribution shows further the reiteration principle.
Resumo:
The coherent plasma process such as parametric decay instability (PDI) has been applied to a homogeneous and unmagnetized plasma. These instabilities cause anomalous absorption of strong electromagnetic radiation under specific conditions of energy and momentum conservation and thus cause anomalous heating of the plasma. The maximum plasma temperatures reached are functions of luminosity of the radio radiation and plasma parameters. We believe that these processes may be taking place in many astrophysical objects. Here, the conditions in the sources 3C 273, 3C 48 and Crab Nebula are shown to be conducive to the excitation of PDI. These processes also contribute towards the absorption of 21cm radiation
Resumo:
The prediction of the sound attenuation in lined ducts with sheared mean flow has been a topic of research for many years. This involves solving the sheared mean flow wave equation, satisfying the relevant boundary condition. As far as the authors' knowledge goes, this has always been done using numerical techniques. Here, an analytical solution is presented for the wave propagation in two-dimensional rectangular lined ducts with laminar mean flow. The effect of laminar mean flow is studied for both the downstream and the upstream wave propagation. The attenuation values predicted for the laminar mean flow case are compared with those for the case of uniform mean flow. Analytical expressions are derived for the transfer matrices.
Resumo:
Exact traveling-wave solutions of time-dependent nonlinear inhomogeneous PDEs, describing several model systems in geophysical fluid dynamics, are found. The reduced nonlinear ODEs are treated as systems of linear algebraic equations in the derivatives. A variety of solutions are found, depending on the rank of the algebraic systems. The geophysical systems include acoustic gravity waves, inertial waves, and Rossby waves. The solutions describe waves which are, in general, either periodic or monoclinic. The present approach is compared with the earlier one due to Grundland (1974) for finding exact solutions of inhomogeneous systems of nonlinear PDEs.
Resumo:
A complete solution to the fundamental problem of delineation of an ECG signal into its component waves by filtering the discrete Fourier transform of the signal is presented. The set of samples in a component wave is transformed into a complex sequence with a distinct frequency band. The filter characteristics are determined from the time signal itself. Multiplication of the transformed signal with a complex sinusoidal function allows the use of a bank of low-pass filters for the delineation of all component waves. Data from about 300 beats have been analysed and the results are highly satisfactory both qualitatively and quantitatively.
Resumo:
A mixed boundary-valued problem associated with the diffusion equation, that involves the physical problem of cooling of an infinite slab in a two-fluid medium, is solved completely by using the Wiener-Hopf technique. An analytical solution is derived for the temperature distribution at the quench fronts being created by two different layers of cold fluids having different cooling abilities moving on the upper surface of the slab at constant speed. Simple expressions are derived for the values of the sputtering temperatures of the slab at the points of contact with the respective layers, assuming one layer of the fluid to be of finite extent and the other of infinite extent. The main problem is solved through a three-part Wiener - Hopf problem of a special type, and the numerical results under certain special circumstances are obtained and presented in the form of a table.
Resumo:
We describe a Finite Difference Method for the determination of the electrostatic field in a multilayered electrooptic device. The Laplace equation is solved, assuming a suitable closed area, by taking into account the different permittivities of the various layers. The effect of a higher permittivity in the guiding layer has been explicitly considered. As a practical example, we calculate the phase shift of a guided optical wave within an electrooptic modulator. A review of the various methods in use for the field analysis is given. Some criteria for the selection of the appropriate method are also mentioned.
Resumo:
Exact travelling wave solutions for hydromagnetic waves in an exponentially stratified incompressible medium are obtained. With the help of two integrals it becomes possible to reduce the system of seven nonlinear PDE's to a second order nonlinear ODE which describes an one dimensional harmonic oscillator with a nonlinear friction term. This equation is studied in detail in the phase plane. The travelling waves are periodic only when they propagate either horizontally or vertically. The reduced second order nonlinear differential equation describing the travelling waves in inhomogeneous conducting media has rather ubiquitous nature in that it also appears in other geophysical systems such as internal waves, Rossby waves and topographic Rossby waves in the ocean.
Resumo:
Resonant sound absorbers are used widely as anechoic coatings in underwater applications. In this paper a finite element scheme based on the Galerkin technique is used to analyze the reflection characteristics of the resonant absorber when insonified by a normal incidence plane wave. A waveguide theory coupled with an impedance matching condition in the fluid is used to model the problem. It is shown in this paper that the fluid medium encompassing the absorber can be modeled as an elastic medium with equivalent Lamé constants. Quarter symmetry conditions within the periodic unit cell are exploited. The finite element results are compared with analytical results, and with results published elsewhere in the literature. It is shown in the process that meshing of the fluid domain can be obviated if the transmission coefficients or reflection coefficients only are desired as is often the case. Finally, some design curves for thin resonant absorbers with water closure are presented in this paper.
Resumo:
A spectral method that obtains the soliton and periodic solutions to the nonlinear wave equation is presented. The results show that the nonlinear group velocity is a function of the frequency shift as well as of the soliton power. When the frequency shift is a function of time, a solution in terms of the Jacobian elliptic function is obtained. This solution is periodic in nature, and, to generate such an optical pulse train, one must simultaneously amplitude- and frequency-modulate the optical carrier. Finally, we extend the method to include the effect of self-steepening.
Resumo:
The flow over a missile-shaped configuration is investigated by means of Schlieren visualization in short-duration facility producing free stream Mach numbers of 5.75 and 8. This visualization technique is demonstrated with a 41 degrees full apex angle blunt cone missile-shaped body mounted with and without cavity. Experiments are carried out with air as the test gas to visualize the flow field. The experimental results show a strong intensity variation in the deflection of light in a flow field, due to the flow compressibility. Shock stand-off distance measured with the Schlieren method is in good agreement with theory and computational fluid dynamic study for both the configurations. Magnitude of the shock oscillation for a cavity model may be greater than the case of a model without cavity. The picture of visualization shows that there is an outgoing and incoming flow closer to the cavity. Cavity flow oscillation was found to subside to steady flow with a decrease in the free stream Mach number.