249 resultados para self-construal
Resumo:
A self-supported 40W Direct Methanol Fuel Cell (DMFC) system has been developed and performance tested. The auxiliaries in the DMFC system comprise a methanol sensor, a liquid-level indicator, and fuel and air pumps that consume a total power of about 5W. The system has a 15-cell DMFC stack with active electrode-area of 45 cm(2). The self-supported DMFC system addresses issues related to water recovery from the cathode exhaust, and maintains a constant methanol-feed concentration with thermal management in the system. Pure methanol and water from cathode exhaust are pumped to the methanol-mixing tank where the liquid level is monitored and controlled with the help of a liquid-level indicator. During the operation, methanol concentration in the feed solution at the stack outlet is monitored using a methanol sensor, and pure methanol is added to restore the desired methanol concentration in the feed tank by adding the product water from the cathode exhaust. The feed-rate requirements of fuel and oxidant are designed for the stack capacity of 40W. The self-supported DMFC system is ideally suited for various defense and civil applications and, in particular, for charging the storage batteries.
Resumo:
In this work, the synthesis of an oligothiophene having a donor acceptor donor (D-A-D) chromophore with hydrogen bonding groups is described. The D-A-D molecule was demonstrated to self-organize via intermolecular H-bonding between barbituric acid units. Interactions between the oligothiophene subunits were also found to be important, affording nanoribbons that could be observed by atomic force and transmission electron microscopy. The applicability of the oligothiophene for organic electronic applications was investigated by fabricating organic field-effect transistors (OFETs) and organic photovoltaic devices. The OFET measurements yielded p-type mobility of 7 x 10(-7) cm(2)/(Vs), and when blended with C(60)-PCBM, the photovoltaic efficiency was observed to be 0.18%.
Resumo:
We propose a method for the dynamic simulation of a collection of self-propelled particles in a viscous Newtonian fluid. We restrict attention to particles whose size and velocity are small enough that the fluid motion is in the creeping flow regime. We propose a simple model for a self-propelled particle, and extended the Stokesian Dynamics method to conduct dynamic simulations of a collection of such particles. In our description, each particle is treated as a sphere with an orientation vector p, whose locomotion is driven by the action of a force dipole Sp of constant magnitude S0 at a point slightly displaced from its centre. To simplify the calculation, we place the dipole at the centre of the particle, and introduce a virtual propulsion force Fp to effect propulsion. The magnitude F0 of this force is proportional to S0. The directions of Sp and Fp are determined by p. In isolation, a self-propelled particle moves at a constant velocity u0 p, with the speed u0 determined by S0. When it coexists with many such particles, its hydrodynamic interaction with the other particles alters its velocity and, more importantly, its orientation. As a result, the motion of the particle is chaotic. Our simulations are not restricted to low particle concentration, as we implement the full hydrodynamic interactions between the particles, but we restrict the motion of particles to two dimensions to reduce computation. We have studied the statistical properties of a suspension of self-propelled particles for a range of the particle concentration, quantified by the area fraction φa. We find several interesting features in the microstructure and statistics. We find that particles tend to swim in clusters wherein they are in close proximity. Consequently, incorporating the finite size of the particles and the near-field hydrodynamic interactions is of the essence. There is a continuous process of breakage and formation of the clusters. We find that the distributions of particle velocity at low and high φa are qualitatively different; it is close to the normal distribution at high φa, in agreement with experimental measurements. The motion of the particles is diffusive at long time, and the self-diffusivity decreases with increasing φa. The pair correlation function shows a large anisotropic build-up near contact, which decays rapidly with separation. There is also an anisotropic orientation correlation near contact, which decays more slowly with separation. Movies are available with the online version of the paper.
Resumo:
We control the stiffnesses of two dual double cantelevers placed in series to control penetration into a perflurooctyltrichlorosilane monolayer self assembled on aluminium and silicon substrates. The top cantilever which carries the probe is displaced with respect to the bottom cantilever which carries the substrate, the difference in displacement recorded using capacitors gives penetration. We further modulate the input displacement sinusoidally to deconvolute the viscoelastic properties of the monolayer. When the intervention is limited to the terminal end of the molecule there is a strong viscous response in consonance with the ability of the molecule to dissipate energy by the generation of gauche defects freely. When the intervention reaches the backbone, at a contact mean pressure of 0.2GPa the damping disappears abruptly and the molecule registers a steep rise in elastic modulus and relaxation time constant, with increasing contact pressure. We offer a physical explanation of the process and describe this change as due to a phase transition from a liquid like to a solid like state.
Resumo:
Drop breakup inviscous liquids in agitated vessels occurs in elongational flow around impeller blade edges. The drop size distributions measured over extended periods for impellers of different sizes show that breakup process continues up to 15-20 h, before a steady state is reached. The size distributions evolve in a self-similar way till the steady state is reached. The scaled size distributions vary with impeller size and impeller speed, in contrast with the near universal scaling known for drop breakup in turbulent flows. The steady state size of the largest drop follows inverse scaling with impeller tip velocity. The breadth of the scaled size distributions also shows a monotonic relationship with impeller tip velocity only. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Substitutional self-assembly of thiol and selenol SAMs from a lying-down phase of butanedithiol (C4DT) (SAM) were investigated using thiols, disulfide, and diselenide molecules. The intent was to address the question if formation of a lying-down dithiol phase is an impediment to formation of standing-up dithiol phases as it has been assumed. It is demonstrated that this is not the case, and the C4DT SAM, where both the sulfur atoms are chemisorbed on gold, is removed and replaced in all cases. Differences in substitution kinetics are observed.
Resumo:
The present work combines two rapidly growing research areas-functional supramolecular gels and lanthanide based hybrid materials. Facile hydrogel formation from several lanthanide(III) cholates has been demonstrated. The morphological and mechanical properties of these cholate gels were investigated by TEM and rheology. The hydrogel matrix was subsequently utilized for the sensitization of Tb(III) by doping a non-coordinating chromophore, 2,3-dihydroxynaphthalene (DHN), at micromolar concentrations. In the mixed gels of Tb(III)-Eu(III), an energy transfer pathway was found to operate from Tb(III) to Eu(III) and by utilizing this energy transfer, tunable multiple-color luminescent hydrogels were obtained. The emissive properties of the hydrogels were also retained in the xerogels and their suspensions in n-hexane were used for making luminescent coating on glass surface.
Resumo:
A Shape Memory Alloy (SMA) wire reinforced composite shell structure is analyzed for self-healing characteristic using Variational Asymptotic Method (VAM). SMA behavior is modeled using a onedimensional constitutive model. A pre-notched specimen is loaded longitudinally to simulate crack propagation. The loading process is accompanied by martensitic phase transformation in pre-strained SMA wires, bridging the crack. To heal the composite, uniform heating is required to initiate reverse transformation in the wires and bringing the crack faces back into contact. The pre-strain in the SMA wires used for reinforcement, causes a closure force across the crack during reverse transformation of the wires under heating. The simulation can be useful in design of self-healing composite structures using SMA. Effect of various parameters, like composite and SMA material properties and the geometry of the specimen, on the cracking and self-healing can also be studied.
Resumo:
This paper reports a self-consistent Poisson-Schr¨odinger scheme including the effects of the piezoelectricity, the spontaneous polarization and the charge density on the electronic states and the quasi-Fermi level energy in wurtzite type semiconductor heterojunction and quantum-laser.