127 resultados para reading problems
Resumo:
ZnO is a unique material with numerous applications. There has been great interest in the synthesis of long nanowires to explore new technology coupled with length. But the quest to enhance the length is limited by various experimental shortcomings such as catalytic poisoning, degradation of the precursors and growth in all possible directions. This review article focuses on the growth of ultralong ZnO nanowires along with possible methodologies to overcome these limitations.
Resumo:
Transductive SVM (TSVM) is a well known semi-supervised large margin learning method for binary text classification. In this paper we extend this method to multi-class and hierarchical classification problems. We point out that the determination of labels of unlabeled examples with fixed classifier weights is a linear programming problem. We devise an efficient technique for solving it. The method is applicable to general loss functions. We demonstrate the value of the new method using large margin loss on a number of multi-class and hierarchical classification datasets. For maxent loss we show empirically that our method is better than expectation regularization/constraint and posterior regularization methods, and competitive with the version of entropy regularization method which uses label constraints.
Resumo:
Three codes, that can solve three dimensional linear elastostatic problems using constant boundary elements while ignoring body forces, are provided here. The file 'bemconst.m' contains a MATLAB code for solving three dimensional linear elastostatic problems using constant boundary elements while ignoring body forces. The file 'bemconst.f90' is a Fortran translation of the MATLAB code contained in the file 'bemconst.m'. The file 'bemconstp.f90' is a parallelized version of the Fortran code contained in the file 'bemconst.f90'. The file 'inbem96.txt' is the input file for the Fortran codes contained in the files 'bemconst.f90' and 'bemconstp.f90'. Author hereby declares that the present codes are the original works of the author. Further, author hereby declares that any of the present codes, in full or in part, is not a translation or a copy of any of the existing codes written by someone else. Author's institution (Indian Institute of Science) has informed the author in writing that the institution is not interested in claiming any copyright on the present codes. Author is hereby distributing the present codes under the MIT License; full text of the license is included in each of the files that contain the codes.
Resumo:
In this article, we derive an a posteriori error estimator for various discontinuous Galerkin (DG) methods that are proposed in (Wang, Han and Cheng, SIAM J. Numer. Anal., 48: 708-733, 2010) for an elliptic obstacle problem. Using a key property of DG methods, we perform the analysis in a general framework. The error estimator we have obtained for DG methods is comparable with the estimator for the conforming Galerkin (CG) finite element method. In the analysis, we construct a non-linear smoothing function mapping DG finite element space to CG finite element space and use it as a key tool. The error estimator consists of a discrete Lagrange multiplier associated with the obstacle constraint. It is shown for non-over-penalized DG methods that the discrete Lagrange multiplier is uniformly stable on non-uniform meshes. Finally, numerical results demonstrating the performance of the error estimator are presented.
Resumo:
In this work, we present a finite element formulation for the Saint-Venant torsion and bending problems for prismatic beams. The torsion problem formulation is based on the warping function, and can handle multiply-connected regions (including thin-walled structures), compound and anisotropic bars. Similarly, the bending formulation, which is based on linearized elasticity theory, can handle multiply-connected domains including thin-walled sections. The torsional rigidity and shear centers can be found as special cases of these formulations. Numerical results are presented to show the good coarse-mesh accuracy of both the formulations for both the displacement and stress fields. The stiffness matrices and load vectors (which are similar to those for a variable body force in a conventional structural mechanics problem) in both formulations involve only domain integrals, which makes them simple to implement and computationally efficient. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a simple technique for reducing the computational effort while solving any geotechnical stability problem by using the upper bound finite element limit analysis and linear optimization. In the proposed method, the problem domain is discretized into a number of different regions in which a particular order (number of sides) of the polygon is chosen to linearize the Mohr-Coulomb yield criterion. A greater order of the polygon needs to be selected only in that region wherein the rate of the plastic strains becomes higher. The computational effort required to solve the problem with this implementation reduces considerably. By using the proposed method, the bearing capacity has been computed for smooth and rough strip footings and the results are found to be quite satisfactory.
Resumo:
A numerical formulation has been proposed for solving an axisymmetric stability problem in geomechanics with upper bound limit analysis, finite elements, and linear optimization. The Drucker-Prager yield criterion is linearized by simulating a sphere with a circumscribed truncated icosahedron. The analysis considers only the velocities and plastic multiplier rates, not the stresses, as the basic unknowns. The formulation is simple to implement, and it has been employed for finding the collapse loads of a circular footing placed over the surface of a cohesive-frictional material. The formulation can be used to solve any general axisymmetric geomechanics stability problem.
Resumo:
In this article, we study the problem of determining an appropriate grading of meshes for a system of coupled singularly perturbed reaction-diffusion problems having diffusion parameters with different magnitudes. The central difference scheme is used to discretize the problem on adaptively generated mesh where the mesh equation is derived using an equidistribution principle. An a priori monitor function is obtained from the error estimate. A suitable a posteriori analogue of this monitor function is also derived for the mesh construction which will lead to an optimal second-order parameter uniform convergence. We present the results of numerical experiments for linear and semilinear reaction-diffusion systems to support the effectiveness of our preferred monitor function obtained from theoretical analysis. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
In this paper, a C-0 interior penalty method has been proposed and analyzed for distributed optimal control problems governed by the biharmonic operator. The state and adjoint variables are discretized using continuous piecewise quadratic finite elements while the control variable is discretized using piecewise constant approximations. A priori and a posteriori error estimates are derived for the state, adjoint and control variables under minimal regularity assumptions. Numerical results justify the theoretical results obtained. The a posteriori error estimators are useful in adaptive finite element approximation and the numerical results indicate that the sharp error estimators work efficiently in guiding the mesh refinement. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Story understanding involves many perceptual and cognitive subprocesses, from perceiving individual words, to parsing sentences, to understanding the relationships among the story characters. We present an integrated computational model of reading that incorporates these and additional subprocesses, simultaneously discovering their fMRI signatures. Our model predicts the fMRI activity associated with reading arbitrary text passages, well enough to distinguish which of two story segments is being read with 74% accuracy. This approach is the first to simultaneously track diverse reading subprocesses during complex story processing and predict the detailed neural representation of diverse story features, ranging from visual word properties to the mention of different story characters and different actions they perform. We construct brain representation maps that replicate many results from a wide range of classical studies that focus each on one aspect of language processing and offer new insights on which type of information is processed by different areas involved in language processing. Additionally, this approach is promising for studying individual differences: it can be used to create single subject maps that may potentially be used to measure reading comprehension and diagnose reading disorders.
Resumo:
A finite difference method for a time-dependent singularly perturbed convection-diffusion-reaction problem involving two small parameters in one space dimension is considered. We use the classical implicit Euler method for time discretization and upwind scheme on the Shishkin-Bakhvalov mesh for spatial discretization. The method is analysed for convergence and is shown to be uniform with respect to both the perturbation parameters. The use of the Shishkin-Bakhvalov mesh gives first-order convergence unlike the Shishkin mesh where convergence is deteriorated due to the presence of a logarithmic factor. Numerical results are presented to validate the theoretical estimates obtained.
Resumo:
This paper deals with the adaptive mesh generation for singularly perturbed nonlinear parameterized problems with a comparative research study on them. We propose an a posteriori error estimate for singularly perturbed parameterized problems by moving mesh methods with fixed number of mesh points. The well known a priori meshes are compared with the proposed one. The comparison results show that the proposed numerical method is highly effective for the generation of layer adapted a posteriori meshes. A numerical experiment of the error behavior on different meshes is carried out to highlight the comparison of the approximated solutions. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Computing the maximum of sensor readings arises in several environmental, health, and industrial monitoring applications of wireless sensor networks (WSNs). We characterize the several novel design trade-offs that arise when green energy harvesting (EH) WSNs, which promise perpetual lifetimes, are deployed for this purpose. The nodes harvest renewable energy from the environment for communicating their readings to a fusion node, which then periodically estimates the maximum. For a randomized transmission schedule in which a pre-specified number of randomly selected nodes transmit in a sensor data collection round, we analyze the mean absolute error (MAE), which is defined as the mean of the absolute difference between the maximum and that estimated by the fusion node in each round. We optimize the transmit power and the number of scheduled nodes to minimize the MAE, both when the nodes have channel state information (CSI) and when they do not. Our results highlight how the optimal system operation depends on the EH rate, availability and cost of acquiring CSI, quantization, and size of the scheduled subset. Our analysis applies to a general class of sensor reading and EH random processes.
Resumo:
Minimization problems with respect to a one-parameter family of generalized relative entropies are studied. These relative entropies, which we term relative alpha-entropies (denoted I-alpha), arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative alpha-entropies behave like squared Euclidean distance and satisfy the Pythagorean property. Minimizers of these relative alpha-entropies on closed and convex sets are shown to exist. Such minimizations generalize the maximum Renyi or Tsallis entropy principle. The minimizing probability distribution (termed forward I-alpha-projection) for a linear family is shown to obey a power-law. Other results in connection with statistical inference, namely subspace transitivity and iterated projections, are also established. In a companion paper, a related minimization problem of interest in robust statistics that leads to a reverse I-alpha-projection is studied.