359 resultados para random wave
Resumo:
Given an n x n complex matrix A, let mu(A)(x, y) := 1/n vertical bar{1 <= i <= n, Re lambda(i) <= x, Im lambda(i) <= y}vertical bar be the empirical spectral distribution (ESD) of its eigenvalues lambda(i) is an element of C, i = l, ... , n. We consider the limiting distribution (both in probability and in the almost sure convergence sense) of the normalized ESD mu(1/root n An) of a random matrix A(n) = (a(ij))(1 <= i, j <= n), where the random variables a(ij) - E(a(ij)) are i.i.d. copies of a fixed random variable x with unit variance. We prove a universality principle for such ensembles, namely, that the limit distribution in question is independent of the actual choice of x. In particular, in order to compute this distribution, one can assume that x is real or complex Gaussian. As a related result, we show how laws for this ESD follow from laws for the singular value distribution of 1/root n A(n) - zI for complex z. As a corollary, we establish the circular law conjecture (both almost surely and in probability), which asserts that mu(1/root n An) converges to the uniform measure on the unit disc when the a(ij) have zero mean.
Resumo:
Several investigators in the past have used the radiance depression (with respect to clear-sky infrared radiance), resulting from the presence of mineral dust aerosols in the atmosphere, as an index of dust aerosol load in the atmosphere during local noon. Here, we have used a modified approach to retrieve dust index during night since assessment of diurnal average infrared dust forcing essentially requires information on dust aerosols during night. For this purpose, we used infrared radiance (10.5-12.5 mu m), acquired from the METEOSAT-5 satellite (similar to 5 km resolution). We found that the `dust index' algorithm, valid for daytime, will no longer hold during the night because dust is then hotter than the theoretical dust-free reference. Hence we followed a `minimum reference' approach instead of a conventional `maximum reference' approach. A detailed analysis suggests that the maximum dust load occurs during the daytime. Over the desert regions of India and Africa, maximum change in dust load is as much as a factor of four between day and night and factor of two variations are commonly observed. By realizing the consequent impact on long wave dust forcing, sensitivity studies were carried out, which indicate that utilizing day time data for estimating the diurnally averaged long-wave dust radiative forcing results in significant errors (as much as 50 to 70%). Annually and regionally averaged long wave dust radiative forcing (which account for the diurnal variation of dust) at the top of the atmosphere over Afro-Asian region is 2.6 +/- 1.8 W m(-2), which is 30 to 50% lower than those reported earlier. Our studies indicate that neglecting diurnal variation of dust while assessing its radiative impact leads to an overestimation of dust radiative forcing, which in turn result in underestimation of the radiative impact of anthropogenic aerosols.
Resumo:
We give an explicit, direct, and fairly elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses only some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory; therefore it would form useful supplementary reading for a graduate course on quantum mechanics.
Resumo:
A technique is developed to study random vibration of nonlinear systems. The method is based on the assumption that the joint probability density function of the response variables and input variables is Gaussian. It is shown that this method is more general than the statistical linearization technique in that it can handle non-Gaussian excitations and amplitude-limited responses. As an example a bilinear hysteretic system under white noise excitation is analyzed. The prediction of various response statistics by this technique is in good agreement with other available results.
Resumo:
In this article, an ultrasonic wave propagation in graphene sheet is studied using nonlocal elasticity theory incorporating small scale effects. The graphene sheet is modeled as an isotropic plate of one-atom thick. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of wave propagation model is also derived for the graphene sheet. The nonlocal scale parameter introduces certain band gap region in in-plane and flexural wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. The explicit expressions for cutoff frequencies and escape frequencies are derived. The escape frequencies are mainly introduced because of the nonlocal elasticity. Obviously these frequencies are function of nonlocal scaling parameter. It has also been obtained that these frequencies are independent of y-directional wavenumber. It means that for any type of nanostructure, the escape frequencies are purely a function of nonlocal scaling parameter only. It is also independent of the geometry of the structure. It has been found that the cutoff frequencies are function of nonlocal scaling parameter (e(0)a) and the y-directional wavenumber (k(y)). For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(o)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
First, the non-linear response of a gyrostabilized platform to a small constant input torque is analyzed in respect to the effect of the time delay (inherent or deliberately introduced) in the correction torque supplied by the servomotor, which itself may be non-linear to a certain extent. The equation of motion of the platform system is a third order nonlinear non-homogeneous differential equation. An approximate analytical method of solution of this equation is utilized. The value of the delay at which the platform response becomes unstable has been calculated by using this approximate analytical method. The procedure is illustrated by means of a numerical example. Second, the non-linear response of the platform to a random input has been obtained. The effects of several types of non-linearity on reducing the level of the mean square response have been investigated, by applying the technique of equivalent linearization and solving the resulting integral equations by using laguerre or Gaussian integration techniques. The mean square responses to white noise and band limited white noise, for various values of the non-linear parameter and for different types of non-linearity function, have been obtained. For positive values of the non-linear parameter the levels of the non-linear mean square responses to both white noise and band-limited white noise are low as compared to the linear mean square response. For negative values of the non-linear parameter the level of the non-linear mean square response at first increases slowly with increasing values of the non-linear parameter and then suddenly jumps to a high level, at a certain value of the non-linearity parameter.
Resumo:
When the size (L) of a one-dimensional metallic conductor is less than the correlation length λ-1 of the Gaussian random potential, one expects transport properties to show ballistic behaviour. Using an invariant imbedding method, we study the exact distribution of the resistance, of the phase θ of the reflection amplitude of an incident electron of wave number k0, and of dθ/dk0, for λL ll 1. The resistance is non-self-averaging and the n-th resistance moment varies periodically as (1 - cos 2k0L)n. The charge fluctuation noise, determined by the distribution of dθ/dk0, is constant at low frequencies.
Resumo:
The k-colouring problem is to colour a given k-colourable graph with k colours. This problem is known to be NP-hard even for fixed k greater than or equal to 3. The best known polynomial time approximation algorithms require n(delta) (for a positive constant delta depending on k) colours to colour an arbitrary k-colourable n-vertex graph. The situation is entirely different if we look at the average performance of an algorithm rather than its worst-case performance. It is well known that a k-colourable graph drawn from certain classes of distributions can be ii-coloured almost surely in polynomial time. In this paper, we present further results in this direction. We consider k-colourable graphs drawn from the random model in which each allowed edge is chosen independently with probability p(n) after initially partitioning the vertex set into ii colour classes. We present polynomial time algorithms of two different types. The first type of algorithm always runs in polynomial time and succeeds almost surely. Algorithms of this type have been proposed before, but our algorithms have provably exponentially small failure probabilities. The second type of algorithm always succeeds and has polynomial running time on average. Such algorithms are more useful and more difficult to obtain than the first type of algorithms. Our algorithms work as long as p(n) greater than or equal to n(-1+is an element of) where is an element of is a constant greater than 1/4.
Resumo:
It is shown that besides the continuous spectrum which damps away as inverse power of time, the coupled Alfvén wave equation, which gives coupling between a shear Alfvén wave and a surface wave, can also admit a well behaved harmonic solution in the closed form for a set of initial conditions. This solution, though valid for finite time intervals, points out that the Alfvén surface waves can have a band of frequency (instead of a monochromatic frequency for a nonsheared magnetic field) within which the local field line resonance frequency can lie, and thus can excite magnetic pulsations with latitude-dependent frequency. By considering magnetic fields not only varying in magnitude but also in direction, it is shown that the time interval for the validity of the harmonic solution depend upon the angle between the magnetic field directions on either side of the magnetopause. For small values of the angle the time interval can become appreciably large.
Resumo:
A new approach for describing dislocations and other topological defects in crystals, based on the density wave theory of Ramakrishnan and Yussouff is presented. Quantitative calculations are discussed in brief for the order parameter profiles, the atomic configuration and the free energy of a screw dislocation with Burgers vector b = (a/2, a/2,a/2 ) in a bcc solid. Our results for the free energy of the dislocation in a crystal of sizeR, when expressed as (λb 2/4π) ln (αR/|b|) whereλ is the shear elastic constant, yield, for example, the valueα ⋍ 1·85 for sodium at its freezing temperature (371°K). The density distribution in the presence of the dislocation shows that the dislocation core has a columnar character. To our knowledge, this study represents the first calculation of dislocation structure, including the core, within the framework of an order parameter theory incorporating thermal effects.
Resumo:
A microscopic expression for the frequency and wave vector dependent dielectric constant of a dense dipolar liquid is derived starting from the linear response theory. The new expression properly takes into account the effects of the translational modes in the polarization relaxation. The longitudinal and the transverse components of the dielectric constant show vastly different behavior at the intermediate values of the wave vector k. We find that the microscopic structure of the dense liquid plays an important role at intermediate wave vectors. The continuum model description of the dielectric constant, although appropriate at very small values of wave vector, breaks down completely at the intermediate values of k. Numerical results for the longitudinal and the transverse dielectric constants are obtained by using the direct correlation function from the mean‐spherical approximation for dipolar hard spheres. We show that our results are consistent with all the limiting expressions known for the dielectric function of matter.
Resumo:
The probability distribution of the eigenvalues of a second-order stochastic boundary value problem is considered. The solution is characterized in terms of the zeros of an associated initial value problem. It is further shown that the probability distribution is related to the solution of a first-order nonlinear stochastic differential equation. Solutions of this equation based on the theory of Markov processes and also on the closure approximation are presented. A string with stochastic mass distribution is considered as an example for numerical work. The theoretical probability distribution functions are compared with digital simulation results. The comparison is found to be reasonably good.