255 resultados para predictions
Resumo:
A critical test has been presented to establish the nature of the kinetic pathways for the decomposition of Fe-12 at.% Si alloy below the metastable tricritical point. The results, based on the measurements of saturation magnetization, establish that a congruent ordering from B2 --> D0(3) precedes the development of a B2 + D0(3) two-phase field, consistent with the predictions in 1976 of Allen and Cahn.
Resumo:
Assuming an entropic origin for phason elasticity in quasicrystals, we derive predictions for the temperature dependence of grain-boundary structure and free energy, the nature of the elastic instability in these systems, and the behavior of sound damping near the instability. We believe that these will provide decisive tests of the entropic model for quasicrystals.
Resumo:
A model for coalescence efficiency of two drops embedded in an eddy has been developed. Unlike the other models which consider only head-on collisions, the model considers the droplets to approach at an arbitrary angle. The drop pair is permitted to undergo rotation while they approach each other. For coalescence to occur, the drops are assumed to approach each other under a squeezing force acting over the life time of eddy but which can vary with time depending upon the angle of approach. The model accounts for the deformation of tip regions of the approaching drops and, describes the rupture of the intervening film, based on stability considerations while film drainage is continuing under the combined influence of the hydrodynamic and van der Waals forces. The coalescence efficiency is defined as the ratio of the range of angles resulting in coalescence to the total range of all possible approach angles. The model not only reconciles the contradictory predictions made by the earlier models based on similar framework but also brings out the important role of dispersed-phase viscosity. It further predicts that the dispersions involving pure phases can be stabilized at high rps values. Apart from explaining the hitherto unexplained experimental data of Konno et al. qualitatively, the model also offers an alternate explanation for the interesting observations of Shinnar.
Resumo:
Various factore controlling the preferred facial selectivity in the reductions of a number of sterically unbiased ketones have been evaluated using a semiempirical MO procedure. MNDO optimized geometries do not reveal any significant ground-state distortions which can be correlated with the observed face selectivities. Electrostatic effecta due to an approaching reagent were modeled by placing a test negative charge at a fixed distance from the carbonyl carbon on each of the two faces. A second series of calculations was carried out using the hydride ion as a test nucleophile. The latter calculations effectively include orbital interactions involving the u and u* orbitals of the newly formed bond in the reaction. The computed energy differences with the charge model are generally much larger compared to those with the hydride ion. However, both models lead to predictions which are qualitatively consistent with the experimentally determined facial preferences for most of the systems. Thus, electrostatic interactions between the nucleophile and the substrate seem to effectively determine the face selectivities in these molecules. However, there are a few exceptions in which orbital interactions are found to contribute significantly and occasionally reverse the preference dictated by electrostatic effecta. The remarkable succew of the hydride model calculations, in spite of retaining the unperturbed geometries of the substrates, points to the unimportance of torsional effeds and orbital distortions associated with the pyramidalized carbonyl unit in the transition state in most of the substrates considered. Additional experimental results are reported which provide useful calibration for the present computational approach.
Resumo:
Prediction of lag damping is difficult owing to the delicate balance of drag, induced drag and Coriolis forces in the in‐plane direction. Moreover, induced drag” is sensitive to dynamic wake, bath shed and trailing components, and thus its prediction requires adequate unsteady‐wake representation. Accordingly, rigid‐blade flap‐lag equations are coupled with a three‐dimensional finite‐state wake model; three isolatcd rotor canfigurations with three, four and five blades are treated over a range of thrust levels, tack numbers, lag frequencies and advance ratios. The investigation includes convergence characteristics of damping with respect to the number of radial shape functions and harmonics of the wake model for multiblade modes of low frequency (< 1/ rev.) to high frequency (> 1/rev.). Predicted flap and lag damping levels are then compared with similar predictions with 1) rigid wake (no unsteady induced now), 2) Loewy lift deficiency and 3) dynamic inflow. The coverage also includes correlations with the measured lag regressive‐mode damping in hover and forward flight and comparisons with similar correlations with dynamic inflow. Lag‐damping predictions with the dynamic wake model are consistently higher than the predictions with the dynamic inflow model; even for the low frequency lag regressive mode, the number of wake harmonics should at least be equal to twice the number of blades.
Resumo:
A microscopic theory of the statics and the dynamics of solvation of an ion in a binary dipolar liquid is presented. The theory properly includes the different intermolecular correlations that are present in a binary mixture. As a result, the theory can explain several important aspects of both the statics and the dynamics of solvation that are observed in experiments. It provides a microscopic explanation of the preferential solvation of the more polar species by the solute ion. The dynamics of solvation is predicted to be highly non-exponential, in general. The average relaxation time is found to change nonlinearly with the composition of the mixture. These predictions are in qualitative agreement with the experimental results.
Resumo:
Back face strain (BFS) measurement is now well-established as an indirect technique to monitor crack length in compact tension (CT) fracture specimens [1,2]. Previous work [2] developed empirical relations between fatigue crack propagation (FCP) parameters. BFS, and number of cycles for CT specimens subjected to constant amplitude fatigue loading. These predictions are experimentally validated in terms of the variations of mean values of BFS and load as a function of crack length. Another issue raised by this study concerns the validity of assigning fixed values for the Paris parameters C and n to describe FCP in realistic materials.
Resumo:
A numerical simulation technique has been employed to study the thermal behavior of hot-forging type forming processes. Experiments on the coining and upsetting of an aluminum billet were conducted to validate the numerical predictions. Typical forming conditions for both the coining and upsetting processes were then studied in detail. an electrical analogy scheme was used to determine the thermal contact resistance. This scheme can conviniently provide the interface characteristics for typical processing conditions, which normally involve high pressures and temperatures. A single forging cycle was first considered, and then a batch of twenty-five forgings was studied. Each forging cycle includes the billet mounting, ascent, loading, dwelling, unloading, descent, and billet removal stages. The temperature distribution in the first forging to be formed is found to be significantly different from that at the end of the batch. In industry, forging is essentially a batch operation. The influence of forming speed and reduction on thermal characteristics was investigated also. The variations that can occur in the process design by considering differences in temperature characteristics are discussed also.
Resumo:
The current standard of care for hepatitis C virus (HCV) infection - combination therapy with pegylated interferon and ribavirin - elicits sustained responses in only similar to 50% of the patients treated. No alternatives exist for patients who do not respond to combination therapy. Addition of ribavirin substantially improves response rates to interferon and lowers relapse rates following the cessation of therapy, suggesting that increasing ribavirin exposure may further improve treatment response. A key limitation, however, is the toxic side-effect of ribavirin, hemolytic anemia, which often necessitates a reduction of ribavirin dosage and compromises treatment response. Maximizing treatment response thus requires striking a balance between the antiviral and hemolytic activities of ribavirin. Current models of viral kinetics describe the enhancement of treatment response due to ribavirin. Ribavirin-induced anemia, however, remains poorly understood and precludes rational optimization of combination therapy. Here, we develop a new mathematical model of the population dynamics of erythrocytes that quantitatively describes ribavirin-induced anemia in HCV patients. Based on the assumption that ribavirin accumulation decreases erythrocyte lifespan in a dose-dependent manner, model predictions capture several independent experimental observations of the accumulation of ribavirin in erythrocytes and the resulting decline of hemoglobin in HCV patients undergoing combination therapy, estimate the reduced erythrocyte lifespan during therapy, and describe inter-patient variations in the severity of ribavirin-induced anemia. Further, model predictions estimate the threshold ribavirin exposure beyond which anemia becomes intolerable and suggest guidelines for the usage of growth hormones, such as erythropoietin, that stimulate erythrocyte production and avert the reduction of ribavirin dosage, thereby improving treatment response. Our model thus facilitates, in conjunction with models of viral kinetics, the rational identification of treatment protocols that maximize treatment response while curtailing side effects.
Resumo:
We investigate the Nernst effect in a mesoscopic two-dimensional electron system (2DES) at low magnetic fields, before the onset of Landau level quantization. The overall magnitude of the Nernst signal agrees well with semiclassical predictions. We observe reproducible mesoscopic fluctuations in the signal that diminish significantly with an increase in temperature. We also show that the Nernst effect exhibits an anomalous component that is correlated with an oscillatory Hall effect. This behavior may be able to distinguish between different spin-correlated states in the 2DES.
Resumo:
A finite element method (FEM)-based study has been carried out for the design of flat microtensile samples to evaluate tensile properties of Pt-aluminide (PtAl) bond coats. The critical dimensions of the sample have been determined using a two-dimensional elastic stress analysis. In the present testing scheme, the ratio of the dimensions of the holding length to the fillet radius of the sample was found important to achieve failure within the gage length. The effect of gage length and grip head length also has been examined. The simulation predictions have been experimentally verified by conducting microtensile test of an actual PtAl bond coat at room temperature. The sample design and testing scheme suggested in this study have also been found suitable for evaluation of tensile properties at high temperature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A state-of-the-art model of the coupled ocean-atmosphere system, the climate forecast system (CFS), from the National Centres for Environmental Prediction (NCEP), USA, has been ported onto the PARAM Padma parallel computing system at the Centre for Development of Advanced Computing (CDAC), Bangalore and retrospective predictions for the summer monsoon (June-September) season of 2009 have been generated, using five initial conditions for the atmosphere and one initial condition for the ocean for May 2009. Whereas a large deficit in the Indian summer monsoon rainfall (ISMR; June-September) was experienced over the Indian region (with the all-India rainfall deficit by 22% of the average), the ensemble average prediction was for above-average rainfall during the summer monsoon. The retrospective predictions of ISMR with CFS from NCEP for 1981-2008 have been analysed. The retrospective predictions from NCEP for the summer monsoon of 1994 and that from CDAC for 2009 have been compared with the simulations for each of the seasons with the stand-alone atmospheric component of the model, the global forecast system (GFS), and observations. It has been shown that the simulation with GFS for 2009 showed deficit rainfall as observed. The large error in the prediction for the monsoon of 2009 can be attributed to a positive Indian Ocean Dipole event seen in the prediction from July onwards, which was not present in the observations. This suggests that the error could be reduced with improvement of the ocean model over the equatorial Indian Ocean.
Resumo:
We consider the possibility of fingerprinting the presence of heavy additional Z' bosons that arise naturally in extensions of the standard model such as E-6 models and left-right symmetric models, through their mixing with the standard model Z boson. By considering a class of observables including total cross sections, energy distributions and angular distributions of decay leptons we find significant deviation from the standard model predictions for these quantities with right-handed electrons and left-handed positrons at root s= 800GeV. The deviations being less pronounced at smaller centre of mass energies as the models are already tightly constrained. Our work suggests that the ILC should have a strong beam polarization physics program particularly with these configurations. On the other hand, a forward backward asymmetry and lepton fraction in the backward direction are more sensitive to new physics with realistic polarization due to interesting interplay with the neutrino t-channel diagram. This process complements the study of fermion pair production processes that have been considered for discrimination between these models.
Resumo:
There has been revival of interest in Jerky flow from the point of view of dynamical systems. The earliest attempt in this direction was from our group. One of the predictions of the theory is that Jerky flow could be chaotic. This has been recently verified by us. We have recently extended the earlier model to account for the spatial aspect as well. Both these models are in the form of coupled set of nonlinear differential equations and hence, they are complicated in their structure. For this reason we wish to devise a model based on the results of these two theories in the form of coupled lattice map for the description of the formation and propagation of dislocation bands. We report here one such model and its results.
Resumo:
Potassium disilicate glass and melt have been investigated by using a new partial charge based potential model in which nonbridging oxygens are differentiated from bridging oxygens by their charges. The model reproduces the structural data pertaining to the coordination polyhedra around potassium and the various bond angle distributions excellently. The dynamics of the glass has been studied by using space and time correlation functions. It is found that K ions migrate by a diffusive mechanism in the melt and by hops below the glass transition temperature. They are also found to migrate largely through nonbridging oxygenrich sites in the silicate matrix, thus providing support to the predictions of the modified random network model.