138 resultados para photoelastic stress analysis
Resumo:
This paper presents the thermal vibration analysis of orthotropic nanoplates such as graphene, using the two variable refined plate theory and nonlocal continuum mechanics for small scale effects. The nanoplate is modeled based on two variable refined plate theory and the axial stress caused by the thermal effects is also considered. The two variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the nanoplate are derived from the principle of virtual displacements. The closed form solution for thermal-vibration frequencies of a simply supported rectangular nanoplate has been obtained by using Navier's method of solution. Numerical results obtained by the present theory are compared with available solutions in the literature and the molecular dynamics results. The influences of the small scale coefficient, the room or low temperature, the high temparature, the half wave number and the aspect ratio of nanoplate on the natural frequencies are considered and discussed in detail. It can be concluded that the present theory, which does not require shear correction factor, is not only simple but also comparable to the first-order and higher order shear deformation theory. The present analysis results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the nanoplates. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The surface texture of a die plays an important role in friction during metal forming. In the present study, unidirectional and random surface finishes were produced on hardened steel plate surfaces. To understand the influence of surface texture on friction, experiments were conducted using Al-Mg alloy pins that slid against steel plates of different surface textures. In the sliding experiments, a high coefficient of friction was observed when the pins slid perpendicular to the unidirectional grinding marks and low friction occurred when the pins slid on the random surfaces. Finite element simulations were performed using the measured friction values to understand the stress and strain evolutions in the deforming material using dies with various friction. The numerical results showed that the states of stress and strain rates are strongly influenced by the friction at the interface and hence would influence the final material microstructure. To substantiate the numerical results, laboratory compression tests were conducted. Different surface textures were obtained in order to experience different friction values at different locations. A large variation in the microstructure at these locations was observed during experiments, verifying that surface texture and die friction significantly influence fundamental material formation behavior.
Resumo:
This paper presents the details of nonlinear finite element analysis (FEA) of three point bending specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Cracking strength criterion has been used for simulation of crack propagation by conducting nonlinear FEA. The description about FEA using crack strength criterion has been outlined. Bi-linear tension softening relation has been used for modeling the cohesive stresses ahead of the crack tip. Numerical studies have been carried out on fracture analysis of three point bending specimens. It is observed from the studies that the computed values from FEA are in very good agreement with the corresponding experimental values. The computed values of stress vs crack width will be useful for evaluation of fracture energy, crack tip opening displacement and fracture toughness. Further, these values can also be used for crack growth study, remaining life assessment and residual strength evaluation of concrete structural components.
Resumo:
Drought is the most crucial environmental factor that limits productivity of many crop plants. Exploring novel genes and gene combinations is of primary importance in plant drought tolerance research. Stress tolerant genotypes/species are known to express novel stress responsive genes with unique functional significance. Hence, identification and characterization of stress responsive genes from these tolerant species might be a reliable option to engineer the drought tolerance. Safflower has been found to be a relatively drought tolerant crop and thus, it has been the choice of study to characterize the genes expressed under drought stress. In the present study, we have evaluated differential drought tolerance of two cultivars of safflower namely, A1 and Nira using selective physiological marker traits and we have identified cultivar A1 as relatively drought tolerant. To identify the drought responsive genes, we have constructed a stress subtracted cDNA library from cultivar A1 following subtractive hybridization. Analysis of similar to 1,300 cDNA clones resulted in the identification of 667 unique drought responsive ESTs. Protein homology search revealed that 521 (78 %) out of 667 ESTs showed significant similarity to known sequences in the database and majority of them previously identified as drought stress-related genes and were found to be involved in a variety of cellular functions ranging from stress perception to cellular protection. Remaining 146 (22 %) ESTs were not homologous to known sequences in the database and therefore, they were considered to be unique and novel drought responsive genes of safflower. Since safflower is a stress-adapted oil-seed crop this observation has great relevance. In addition, to validate the differential expression of the identified genes, expression profiles of selected clones were analyzed using dot blot (reverse northern), and northern blot analysis. We showed that these clones were differentially expressed under different abiotic stress conditions. The implications of the analyzed genes in abiotic stress tolerance are discussed in our study.
Resumo:
This paper presents the thermal vibration analysis of single-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and axial stress caused by the thermal effects is also considered. Nonlocal governing equation of motion for this graphene sheet system is derived from the principle of virtual displacements. The closed form solution for thermal-vibration frequencies of a simply supported rectangular nanoplate has been obtained by using the Navier's method of solution. Numerical results obtained by the present theory are compared with available solutions in the literature and the molecular dynamics results. The influences of the small scale coefficient, the room or low temperature, the high temperature, the half wave number and the aspect ratio of nanoplate on the natural frequencies are considered and discussed in detail. The thermal vibration analysis of single- and double-layer graphene sheets are considered for the analysis. The mode shapes of the respective graphene system are also captured in this work. The present analysis results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the graphene.
Resumo:
Inspired by the Brazilian disk geometry we examine the utility of an edge cracked semicircular disk (ECSD) specimen for rapid assessment of fracture toughness of brittle materials using compressive loading. It is desirable to optimize the geometry towards a constant form factor F for evaluating K-I. In this investigation photoelastic and finite element results for K-I evaluation highlight the effect of loading modeled using a Hertzian. A Hertzian loading subtending 4 degrees at the center leads to a surprisingly constant form factor of 1.36. This special case is further analyzed by applying uniform pressure over a chord for facilitating testing.
Resumo:
Despite considerable research to develop carbon based materials for biomedical applications, the toxicity of carbon remains a major concern. In order to address this issue as well as to investigate the cell fate processes of neural cells from the perspective of neural tissue engineering applications, the in vitro cytocompatibility of polyacrylonitrile (PAN) derived continuous carbon nanofibers and PAN derived carbon thin films were investigated both quantitatively and qualitatively using in vitro biochemical assays followed by extensive flow cytometry analysis. The experimental results of Schwann cell fate, i.e. cell proliferation, cell metabolic activity and cell apoptosis on amorphous carbon substrates are discussed in reference to the time dependent evolution of intracellular oxidative stress. Apart from providing evidence that an electrospun carbon nanofibrous substrate can physically guide the cultured Schwann cells, this study suggested that continuous carbon nanofibers and amorphous carbon films are not cytotoxic in vitro and do not significantly induce apoptosis of Schwann cells, but in fact even facilitate their proliferation and growth.
Resumo:
The cylindrical Couette device is commonly employed to study the rheology of fluids, but seldom used for dense granular materials. Plasticity theories used for granular flows predict a stress field that is independent of the shear rate, but otherwise similar to that in fluids. In this paper we report detailed measurements of the stress as a function of depth, and show that the stress profile differs fundamentally from that of fluids, from the predictions of plasticity theories, and from intuitive expectation. In the static state, a part of the weight of the material is transferred to the walls by a downward vertical shear stress, bringing about the well-known Janssen saturation of the stress in vertical columns. When the material is sheared, the vertical shear stress changes sign, and the magnitudes of all components of the stress rise rapidly with depth. These qualitative features are preserved over a range of the Couette gap and shear rate, for smooth and rough walls and two model granular materials. To explain the anomalous rheological response, we consider some hypotheses that seem plausibleapriori, but showthat none survive after careful analysis of the experimental observations. We argue that the anomalous stress is due to an anisotropic fabric caused by the combined actions of gravity, shear, and frictional walls, for which we present indirect evidence from our experiments. A general theoretical framework for anisotropic plasticity is then presented. The detailed mechanics of how an anisotropic fabric is brought about by the above-mentioned factors is not clear, and promises to be a challenging problem for future investigations. (C) 2013 AIP Publishing LLC.
Resumo:
The Himalayas are one of very active seismic regions in the world where devastating earthquakes of 1803 Bihar-Nepal, 1897 Shillong, 1905 Kangra, 1934 Bihar-Nepal, 1950 Assam and 2011 Sikkim were reported. Several researchers highlighted central seismic gap based on the stress accumulation in central part of Himalaya and the non-occurrence of earthquake between 1905 Kangra and 1934 Bihar-Nepal. The region has potential of producing great seismic event in the near future. As a result of this seismic gap, all regions which fall adjacent to the active Himalayan region are under high possible seismic hazard due to future earthquakes in the Himalayan region. In this study, the study area of the Lucknow urban centre which lies within 350 km from the central seismic gap has been considered for detailed assessment of seismic hazard. The city of Lucknow also lies close to Lucknow-Faizabad fault having a seismic gap of 350 years. Considering the possible seismic gap in the Himalayan region and also the seismic gap in Lucknow-Faizabad fault, the seismic hazard of Lucknow has been studied based on deterministic and the probabilistic seismic hazard analysis. Results obtained show that the northern and western parts of Lucknow are found to have a peak ground acceleration of 0.11-0.13 g, which is 1.6- to 2.0-fold higher than the seismic hazard compared to the other parts of Lucknow.
Resumo:
The demand for energy efficient, low weight structures has boosted the use of composite structures assembled using increased quantities of structural adhesives. Bonded structures may be subjected to severe working environments such as high temperature and moisture due to which the adhesive gets degraded over a period of time. This reduces the strength of a joint and leads to premature failure. Measurement of strains in the adhesive bondline at any point of time during service may be beneficial as an assessment can be made on the integrity of a joint and necessary preventive actions may be taken before failure. This paper presents an experimental approach of measuring peel and shear strains in the adhesive bondline of composite single-lap joints using digital image correlation. Different sets of composite adhesive joints with varied bond quality were prepared and subjected to tensile load during which digital images were taken and processed using digital image correlation software. The measured peel strain at the joint edge showed a rapid increase with the initiation of a crack till failure of the joint. The measured strains were used to compute the corresponding stresses assuming a plane strain condition and the results were compared with stresses predicted using theoretical models, namely linear and nonlinear adhesive beam models. A similar trend in stress distribution was observed. Further comparison of peel and shear strains also exhibited similar trend for both healthy and degraded joints. Maximum peel stress failure criterion was used to predict the failure load of a composite adhesive joint and a comparison was made between predicted and actual failure loads. The predicted failure loads from theoretical models were found to be higher than the actual failure load for all the joints.
Resumo:
Adhesives are widely used to execute the assembly of aerospace and automotive structures due to their ability to join dissimilar materials, reduced stress concentration, and improved fatigue resistance. The mechanical behavior of adhesive joints can be studied either using analytical models or by conducting mechanical tests. However, the complexity owing to multiple interfaces, layers with different properties, material and geometric nonlinearity and its three-dimensional nature combine to increase the difficulty in obtaining an overall system of governing equations to predict the joint behavior. On the other hand, experiments are often time consuming and expensive due to a number of parameters involved. Finite element analysis (FEA) is profoundly used in recent years to overcome these limitations. The work presented in this paper involves the finite element modeling and analysis of a composite single lap joint where the adhesive-adherend interface region was modeled using connector elements. The computed stresses were compared with the experimental stresses obtained using digital image correlation technique. The results showed an agreement. Further, the failure load predicted using FEA was found to be closer to the actual failure load obtained by mechanical tests.
Resumo:
Objective: In this study, we report the role of miRNAs involved under nitrogen starvation from widely grown vegetable crop, French bean. In recent years, a great deal of attention has been paid to the elucidation of miRNAs involved in low nitrate stress. Methods: To identify miRNAs expressed under stress, cDNA libraries were analyzed. Results: We reported the nine potential miRNAs with 67 targets involved in nutrient transporters and other stress specific genes. Among the miRNA sequences obtained 6 sequences belong to miR172 family, one with miR169. RT-PCR analysis of expression of miR172 family was induced upon low nitrate stress while miR169 family was repressed. In addition, Pvu-SN7b and Pvu-miR16 may be new members of miRNA172 and miR169 families, respectively. Conclusion: The targets of Pvu-SN7b were major protein kinases, one among which is the Protein Kinase CK2. CK2 Kinase is found to involve in transcription-directed signaling, gene control and cell-cycle regulation. Other targets of Pvu-SN7b were involved in DNA-dependent transcription regulation, photo-periodism, calcium-mediated signaling. Pvu-miR16 targets Thymidine kinase, the key enzyme of deoxy-nucleotide synthesis. The cleavage of these targets affects cell proliferation there by affecting nodule formation. Pvu-miR8 inhibits translation of its target protein Pre-protein translocase, a membrane-bound protein transporter involved in trans-membrane protein transportation. Together these results denote the response and role of miRNAs to nitrate-limiting conditions in French bean.
Resumo:
Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.
Resumo:
In this paper, we present a spectral finite element model (SFEM) using an efficient and accurate layerwise (zigzag) theory, which is applicable for wave propagation analysis of highly inhomogeneous laminated composite and sandwich beams. The theory assumes a layerwise linear variation superimposed with a global third-order variation across the thickness for the axial displacement. The conditions of zero transverse shear stress at the top and bottom and its continuity at the layer interfaces are subsequently enforced to make the number of primary unknowns independent of the number of layers, thereby making the theory as efficient as the first-order shear deformation theory (FSDT). The spectral element developed is validated by comparing the present results with those available in the literature. A comparison of the natural frequencies of simply supported composite and sandwich beams obtained by the present spectral element with the exact two-dimensional elasticity and FSDT solutions reveals that the FSDT yields highly inaccurate results for the inhomogeneous sandwich beams and thick composite beams, whereas the present element based on the zigzag theory agrees very well with the exact elasticity solution for both thick and thin, composite and sandwich beams. A significant deviation in the dispersion relations obtained using the accurate zigzag theory and the FSDT is also observed for composite beams at high frequencies. It is shown that the pure shear rotation mode remains always evanescent, contrary to what has been reported earlier. The SFEM is subsequently used to study wavenumber dispersion, free vibration and wave propagation time history in soft-core sandwich beams with composite faces for the first time in the literature. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The influence of the flow rule on the bearing capacity of strip foundations placed on sand was investigated using a new kinematic approach of upper-bound limit analysis. The method of stress characteristics was first used to find the mechanism of the failure and to compute the stress field by using the Mohr-Coulomb yield criterion. Once the failure mechanism had been established, the kinematics of the plastic deformation was established, based on the requirements of the upper-bound limit theorem. Both associated and nonassociated plastic flows were considered, and the bearing capacity was obtained by equating the rate of external plastic work to the rate of the internal energy dissipation for both smooth and rough base foundations. The results obtained from the analysis were compared with those available from the literature. (C) 2014 American Society of Civil Engineers.