193 resultados para oxidative degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of thermal degradation of poly(vinyl chloride) (PVC) in solution was investigated at various temperatures (210-250degreesC). The degradation rate coefficients were determined from the time evolution of the molecular weight distribution (MWD). The energy of activation, determined from the temperature dependence of the rate coefficient, was 26.6 kcal/mol. The degradation of PVC was also studied in the presence of a catalyst (HZSM-5 zeolite). The results indicated that increase of the degradation rate of PVC is first order with the HZSM-5 concentration up to 50 g/L and zero order at higher concentrations. The thermal degradation kinetics of PVC in the presence of 50 g/L of the catalyst was studied at various temperatures. The temperature dependency of the rate coefficient was used to calculate the activation energy (21.5 kcal/mol). This is consistent with the observation that the presence of a catalyst generally decreases the activation energy and promotes degradation. (C) 2002 John Wiley Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation of vinyl polyperoxides, poly(styrene peroxide, (PSP), poly(alpha-methylstyrene peroxide) (PAMSP) and poly(alpha-phenylstyrene pet-oxide) (PAPSP), was carried out at different temperatures in toluene. The time evolution of molecular weight distributions (MWDs) was determined by gel permeation chromatography (GPC). A continuous distribution model was used to evaluate the random chain degradation rate coefficients. The activation energies, determined from the temperature dependence of the rate coefficients, suggest that thermal degradation of polyperoxides is controlled by the dissociation of the O-O bonds in the backbone of the polymer chain. Among the three polyperoxides investigated, the thermal stability is the highest for PAPSP and the lowest for PAMSP. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most stable vinyl polyperoxide, namely, poly(indene peroxide) (PINDP), an alternating copolymer of indene and oxygen, was synthesized by the oxidative polymerization of indene. It was characterized by H-1-NMR and C-13-NMR, Fourier transform infrared, differential scanning calorimetry, direct pyrolysis mass spectrometry, and gas chromatography mass spectrometry studies. The overall activation energy for the degradation and the glass-transition temperature of PINDP were 47 kcal/mol and 327 K respectively, which were very high compared to those of other vinyl polyperoxides. (C) 2002 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first report on the analysis of random block polysulfide copolymers containing different amounts of repeating units in the copolymer backbone, which has been studied by direct pyrolysis mass spectrometry (DPMS) and by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The homopolymers such as poly(ethylene sulfide) (PES), poly(styrene sulfide) (PSS), and two random copolymers, viz., poly(ethylene sulfide(x)-co-styrene sulfide(y)) [copolymer I (x = y = 0.5) and copolymer II (x = 0.74, y = 0.26)] were investigated by both DPMS and Py-GC/MS (except copolymer II) techniques. In the case of copolymer I, the thermal degradation products of SE1, SE2, S-2, and S2E (S = styrene sulfide, E = ethylene sulfide) were detected in DPMS, whereas the formation of SE1 and SE2 were observed by Py-GC/MS technique. However, for copolymer II, SE3 was also found along with SE1, SE2, S-2, and S2E in DPMS. The formation of additional product (SE3) observed in copolymer II could be due to an increase in the block length formed during copolymerization. Further, a comparative study on thermal degradation of PES, poly(ethylene disulfide) (PEDS), and poly(ethylene tetrasulfide) (PETS) were investigated by Py-GC/MS. The pyrolysis products detected by both DPMS and Py-GC/MS indicates that the thermal decomposition of these polymers yield cyclic sulfides through an intramolecular exchange or by backbiting processes. The linear products with thiol and vinyl groups were also observed by Py-GC/MS along with the cyclic products via carbon hydrogen transfer reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation of a series of para-substituted poly(styrene peroxide)s with electron-donating [CH3, C(CH3)(3)] and electron-attracting (Br) substitutents are investigated by thermogravimetric analysis (TGA). The results indicate that the Hammett relationship can describe quantitatively the trends in maximum rate of polymer decomposition (T-max) observed in TGA and thus thermostability of substituted poly(styrene peroxide)s depends only on the electronic nature of substituents and their ability to stabilize macroradicals formed during chain scission. The experimental results are also substantiated by thermochemical calculations. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic degradation of poly(methyl methacrylate) (PMMA) was carried out in several solvents and some mixtures of solvents. The time evolution of molecular weight distribution (MWD), determined by gel permeation chromatography, is analysed by continuous distribution kinetics. The rate coefficients for polymer degradation are determined for each solvent. The variation of rate coefficients is correlated with the vapour pressure of the solvent, kinematic viscosity of the solution and solvent-polymer interaction parameters. The vapour pressure and the kinematic viscosity of the solution are found to be more critical than other parameters (such as the Huggins and Flory-Huggins constants) in determining the degradation rates. (C) 2001 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultrasonic degradation of poly(vinyl acetate) was carried out in six different solvents and two mixtures of solvents. The evolution of molecular weight distribution (MWD) with time was determined with gel permeation chromatography. The observed MWDs were analyzed by continuous distribution kinetics. A stoichiometric kernel that accounts for preferential mid-point breakage of the polymer chains was used. The degradation rate coefficient of the polymer in each solvent was determined from the model. The variations of rate coefficients were correlated with vapor pressure of the solvent, the Flory–Huggins polymer–solvent interaction parameter and the kinematic viscosity of the solution. A lower saturation vapor pressure resulted in higher degradation rates of the polymer. The degradation rate increased with increasing kinematic viscosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unique phenomenon of ‘autoacceleration’ was observed in a free radical polymerization of vinyl monomers and oxygen. Unlike the well known autoacceleration phenomenon in polymerization processes, this unusual phenomenon is not readily conceivable in terms of solution viscosity based reasoning. Surprisingly, we have observed manifestation of this new autoacceleration during free radical oxidative polymerization of some vinyl monomers at low conversions, where generally the polymerization reaction is zero order, the conversion–time plot are linear and viscosity effects are negligible. In the present paper, we interpret the mechanism of this new autoacceleration phenomenon on the basis of reactivity of the propagating radicals in terms of heat of formation data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel (main-chain)-(side-chain) vinyl polyperoxide, poly(dipentene peroxide)(PDP), an alternating copolymer of dipentene (DP) and oxygen, has been synthesized by thermal oxidative polymerization of DP. The PDP was characterized by 1H NMR, 13C NMR, FTIR, DSC, TGA, and EI-MS studies. The overall activation energies of the degradation from Kissinger’s method were 28 and 33 kcal/mol, respectively, for the endocyclic and acyclic peroxide units. The side-chain peroxy groups were found to be thermally more stable than the main chain. Above 45°C the rate of polymerization increases sharply at a particular instant showing an “autoacceleration” with the formation of knee point. The kinetics of autoacceleration has been studied at various temperatures (45–70°C) and pressures (50–250 psi). © 2000 John Wiley&Sons, Inc. J Appl Polym Sci 79: 1549–1555, 2001

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(methacrylonitrile peroxide) (PMNP) has been synthesized from methacrylonitrile by free radical initiated oxidative polymerization and characterized by different spectroscopic methods. NMR spectroscopy confirmed the alternating copolymer structure with labile peroxy bonds in the main chain. The extreme instability of PMNP was noted from FTIR spectroscopy. Thermal degradation studies by using differential scanning calorimetry and thermogravimetry have revealed that PMNP degrades highly exothermically and the heat of degradation, 42.5 kcal mol−1, is of the same order as that reported for other vinyl polyperoxides. Mass spectral fragmentation pattern under electron impact (EI) condition has also been investigated. The mechanism of the primary exothermic degradation has been substantiated by thermochemical calculations. The chain dynamics of the polyperoxide chain has been studied by means of 13C spin–lattice relaxation times (T1) of the main chain as well as the side chain carbons. The temperature dependence of the spin–lattice relaxation times shows that the PMNP is more flexible compared to the analogous poly(styrene peroxide).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical deposition of Ni-Pd alloy films of various compositions from bath solution containing ethylenediamine (EDA) was carried out to use as anode material for methanol oxidative fuel cell in H2SO4 medium. Electronic absorption spectrum of bath solution containing Ni2+ Pd2+ ions and EDA indicated the formation of a four coordinate square planar metal-ligand complex of both the metal ions. X-ray diffraction (XRD) patterns of the deposited alloy films show an increase in Pd-Ni alloy lattice parameter with increase in Pd content, and indicate the substitution of Pd in the lattice. A nano/ultrafine kind of crystal growth was observed in the alloy film deposited at low current density (2.5 mA cm(-2)). X-ray photoelectron spectroscopic (XPS) studies on the successively sputtered films showed the presence of Ni and Pd in pure metallic states and the surface concentration ratio of Ni to Pd is less than bulk indicating the segregation of Pd on the surface. Electro-catalytic oxidation of methanol in H2SO4 medium is found to be promoted on Ni-Pd electrodeposits. The anodic peak current characteristics to oxidation reaction on Ni-Pd was found typically high when compared to pure nickel and the relative increase in surface area by alloying the Ni by Pd was found to be as much as 300 times. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In lubricated sliding contacts, components wear out and the lubricating oil ages with time. The present work explores the interactive influence between lubricant aging and component wear. The flat face of a steel pin is slid against a rotating steel disk under near isothermal conditions while the contact is immersed in a reservoir of lubricant (hexadecane). The chemical changes in the oil with time are measured by vibrational spectroscopy and gas chromatography. The corresponding chemistry of the pin surface is recorded using X-ray photoelectron spectroscopy while the morphology of the worn pins; surface and subsurface, are observed using a combination of focused ion beam milling and scanning electron 5 microscopy. When compared to thermal auto-oxidation of the lubricant alone, steel on steel friction and wear are found to accentuate the decomposition of oil and to reduce the beneficial impact of antioxidants. The catalytic action of nascent iron, an outcome of pin wear and disk wear, is shown to contribute to this detrimental effect. Over long periods of sliding, the decomposition products of lubricant aging on their own, as well as in conjunction with their products of reaction with iron, generate a thick tribofilm that is highly protective in terms of friction and wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degradation kinetics of polycarbonate [poly(bisphenol A carbonate)] in benzene catalyzed by commercial (rutile) TiO2 (BET surface area = 11 m(2)/g), anatase TiO2 (156 m(2)/g), and 1 atom % Pt/TiO2 (111 m2/g), prepared by the solution combustion technique, was investigated at various temperatures (230-280 degreesC) and 50 atm. The time evolution of the molecular weight distribution (MWD) was determined by gel permeation chromatography (GPC) and modeled with continuous distribution kinetics to obtain the degradation rate coefficients. The rate coefficients for the catalytic degradation of polycarbonate increased by factors of 20, 3.5, and 1.3 compared to the rate coefficients for thermal degradation when catalyzed by nanosized TiO2 anatase, Pt/TiO2 anatase, and commercial TiO2, respectively, at 280 degreesC. The increased catalytic activity of combustion for synthesized TiO2 and 1% Pt/TiO2 might be due to the increased acidity and BET surface area. The activation energies, determined from the temperature dependencies of the rate coefficients, were 16.3, 21.5, and 39.1 kcal/mol for commercial TiO2, combustion-synthesized Pt/TiO2, and anatase TiO2, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid degradation of 3D zinc phosphates primarily yields a one-dimensional ladder compound, an observation that is significant considering that the latter forms 3D structures on heating in water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new family of castor oil based biodegradable polyesters was synthesized by catalyst free melt condensation reaction between two different diacids and castor oil with D-mannitol. The polymers synthesized were characterized by NMR spectroscopy, FF-IR and the thermal properties were analysed by DSC. The results of DSC show that the polymer is rubbery in physiological conditions. The contact angle measurement and hydration test results indicate that the surface of the polymer is hydrophilic. The mechanical properties, evaluated in the tensile mode, shows that the polymer has characteristics of a soft material. In vitro degradation of polymer in PBS solution carried out at physiological conditions indicates that the degradation goes to completion within 21 days and it was also found that the rate of degradation can be tuned by varying the curing conditions. (C) 2011 Elsevier Ltd. All rights reserved.