198 resultados para normal assembly
Resumo:
A force-torque sensor capable of accurate measurement of the three components of externally applied forces and moments is required for force control in robotic applications involving assembly operations. The goal in this paper is to design a Stewart platform based force torque sensor at a near-singular configuration sensitive to externally applied moments. In such a configuration, we show an enhanced mechanical amplification of leg forces and thereby higher sensitivity for the applied external moments. In other directions, the sensitivity will be that of a normal load sensor determined by the sensitivity of the sensing element and the associated electronic amplification, and all the six components of the force and torque can be sensed. In a sensor application, the friction, backlash and other non-linearities at the passive spherical joints of the Stewart platform will affect the measurements in unpredictable ways. In this sensor, we use flexural hinges at the leg interfaces of the base and platform of the sensor. The design dimensions of the flexure joints in the sensor have been arrived at using FEA. The sensor has been fabricated, assembled and instrumented. It has been calibrated for low level loads and is found to show linearity and marked sensitivity to moments about the three orthogonal X, Y and Z axes. This sensor is compatible for usage as a wrist sensor for a robot under development at ISRO Satellite Centre.
Resumo:
We have investigated the possible role of a conserved cis-acting element, the cryptic AUG, present in the 5' UTR of coxsackievirus B3 (CVB3) RNA. CVB3 5' UTR contains multiple AUG codons upstream of the initiator AUG, which are not used for the initiation of translation. The 48S ribosomal assembly takes place upstream of the cryptic AUG. We show here that mutation in the cryptic AUG results in reduced efficiency of translation mediated by the CVB3 IRES; mutation also reduces the interaction of mutant IRES with a well characterized IRES trans-acting factor, the human La protein. Furthermore, partial silencing of the La gene showed a decrease in IRES activity in the case of both the wild-type and mutant. We have demonstrated here that the interaction of the 48S ribosomal complex with mutant RNA was weaker compared with wild-type RNA by ribosome assembly analysis. We have also investigated by chemical and enzymic modifications the possible alteration in secondary structure in the mutant RNA. Results suggest that the secondary structure of mutant RNA was only marginally altered. Additionally, we have demonstrated by generating compensatory and non-specific mutations the specific function of the cryptic AUG in internal initiation. Results suggest that the effect of the cryptic AUG is specific and translation could not be rescued. However, a possibility of tertiary interaction of the cryptic AUG with other cis-acting elements cannot be ruled out. Taken together, it appears that the integrity of the cryptic AUG is important for efficient translation initiation by the CVB3 IRES RNA.
Resumo:
A dinuclear organometallic acceptor 4,4'-bis[trans-Pt(PEt(3))(2)(O(3)SCF(3))(ethynyl)]biphenyl (1) containing Pt-ethynyl functionality is synthesized. Multinuclear NMR ((1)H, (31)P, and (13)C), infrared (IR), and electrospray ionization mass spectrometry (ESI-MS) including single-crystal X-ray diffraction analysis established the formation of 1. Equimolar treatment of acceptor 1 separately with three different ``clip'' type ditopic donors (L(a)-L(c)) yielded [2 + 2] self-assembled three metallamacrocycles 2a-2c, respectively. These macrocycles were characterized by various spectroscopic techniques, and their sizes/shapes were obtained through geometry optimization using molecular mechanics universal force field (MMUFF) simulations. Attachment of unsaturated ethynyl functionality to biphenyl building unit helped to make the macrocycles (2a-2c) pi-electron rich and thereby fluorescent in nature. Furthermore, 2c in solution has been examined to be suitable for sensing electron-deficient nitroaromatic like picric acid, which is often considered as a secondary chemical explosive. The fluorescence study of 2c showed a marked quenching of initial emission intensity upon titrating with picric acid (PA), and it exhibited the largest fluorescence quenching response with high selectivity among various other electron deficient aromatic compounds tested.
Resumo:
Synthesis of a series of two-dimensional metallamacrocycles via coordination-driven self-assembly of a shape-selective Pt(2)(II)-molecular building unit incorporating carbazole-ethynyl functionality is described. An equimolar (1 : 1) combination of a Pt(2)(II)-organometallic 90 degrees acceptor, 1, with rigid linear ditopic donors (L(a) and L(b)) afforded [4 + 4] self-assembled octanuclear molecular squares, 2 and 3, in quantitative yields, respectively [L(a) = 4,4'-bipyridine; L(b) = trans-1,2-bis(4-pyridyl)ethylene]. Conversely, a similar treatment of 1 with an amide-based unsymmetrical flexible ditopic donor, L(c), resulted in the formation of a [2 + 2] self-sorted molecular rhomboid (4a) as a single product [L(c) = N-(4-pyridyl)isonicotinamide]. Despite the possibility of several linkage isomeric macrocycles (rhomboid, triangle and square) due to the different connectivity of L(c), the formation of a single and symmetrical molecular rhomboid (4a) as the only product is an interesting observation. All the self-assembled macrocycles (2, 3 and 4a) were fully characterized by multinuclear NMR ((1)H and (31)P) and ESI-MS analysis. Further structural insights about the size and shape of the macrocycles were obtained through energy minimization using density functional theory (DFT) calculations. Decoration of the starting carbazole building unit with Pt-ethynyl functionality enriches the assemblies to be more p-electron rich and luminescent in nature. Macrocycles 2 and 3 could sense the presence of electron deficient nitroaromatics in solution by quenching of the initial intensity upon gradual addition of picric acid (PA). They exhibited the largest quenching response with high selectivity for nitroaromatics compared to several other electron deficient aromatics tested.
Resumo:
The analysis of propagation of a normal shock wave in CO2‐N2‐He or H2 or H2O system seeded with solid particles is presented. The variation of translational and vibrational temperatures of gas phase and the particle temperatures in the relaxation zone behind the shock front are given in graphical form. These results show that the peak value of population inversion and the width of the inversion zone are highest for He catalyst and lowest for H2O catalyst.
Resumo:
We have investigated the self-assembly of didecyldiselenide on gold containing mercury using X-ray photoelectron spectroscopy, cyclic voltammetry and infrared spectroscopy. The analysis of intensity and chemical shift of selected Se, Hg, and Au photoelectron lines on samples with increasing Hg content, show that didecyldiselenide adsorption strongly contributed to segregation of bulk Hg to the surface. The voltammetry results support this conclusion and suggest the formation of Hg-Au surface amalgam. The Hg surface segregation effect must be related to the restructuring of the surface following initial adsorption, and to the strong selenophilicity of Hg. The reflectance absorbance infrared spectroscopy studies show that the molecular layer on Hg-Au substrates lacks good order.
Resumo:
Three-component self-assembly of a cis-blocked 90 degrees Pd(II) acceptor with a mixture of a tetraimidazole and a linear dipyridyl donor self-discriminated into unusual Pd-8 molecular swing (1) and Pd-6 molecular boat (2), which are characterized by single-crystal X-ray diffraction analysis; their ability to bind C-60 in solution is established by fluorescence titration.
Resumo:
Solubilization of single walled carbon nanotubes (SWNTs) in aqueous milieu by self assembly of bivalent glycolipids is described. Thorough analysis of the resulting composites involving Vis/near-IR spectroscopy, surface plasmon resonance, confocal Raman and atomic force microscopy reveals that glycolipid-coated SWNTs possess specific molecular recognition properties towards lectins.
Resumo:
Coordination-driven self-assembly of binuclear half-sandwich p-cymene ruthenium(II) complexes [Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1a) or [Ru-2(mu-eta(4)-N,N'-diphenyloxamidato)(MeOH)(2)(eta(6)-p-cymene)(2)]( O3SCF3)(2) (1b) separately with an imidazole-based tetratopic donor L in methanol affords two tetranuclear metallamacrocycles 2a and 2b, respectively. Conversely, the similar combination of L with 2,5-dihydroxy-1,4-benzoquinonato (dhbq) bridged binuclear complex [Ru-2(mu-eta(C6H2O4)-C-4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1c) in 1:2 molar ratio resulted in an octanuclear macrocyclic cage 2c. All the self-assembled macrocycles 2a-2c were isolated as their triflate salts in high yields and were characterized fully by multinuclear (H-1, C-13 and F-19) NMR, infrared (IR) and electrospray ionization mass spectrometry (ESIMS). In addition, the molecular structure of macrocycle 2a was established unequivocally by single-crystal X-ray diffraction analysis and adopts a tetranuclear rectangular geometry with the dimensions of 5.53 angstrom x 12.39 angstrom. Furthermore, the photo-and electrochemical properties of these newly synthesized assemblies have been studied by using UV-vis absorption and cyclic voltammetry analysis.
Resumo:
In this study, we present the spontaneous self-assembly of designed simplest aromatic cyclic dipeptides of (L-Phg-L-Phg) and (D-Phg-L-Phg) to form highly stable two-dimensional (2D) nano- and mesosheets with large lateral surface area. Various microscopy data revealed that the morphology of 2D mesosheets resembles the hierarchical natural materials with layered structure. Solution and solid-state NMR studies on cyclo(L-Phg-L-Phg) revealed the presence of strong (N-H-O) hydrogen-bonded molecular chains supported by aromatic pi-pi interactions to form 2D mesosheets. Interestingly, cyclo(D-Phg-L-Phg) self-assembles to form single-crystalline as well as non-crystalline 2D rhomboid sheets with large lateral dimension. X-ray diffraction analysis revealed the stacking of (N-H-O) hydrogen-bonded molecular layers along c-axis supported by aromatic pi-pi interactions. The thermogravimetric analysis shows two transitions with overall high thermal stability attributed to layered hierarchy found in 2D mesosheets.
Resumo:
Electric power systems are exposed to various contingencies. Network contingencies often contribute to over-loading of network branches, unsatisfactory voltages and also leading to problems of stability/voltage collapse. To maintain security of the systems, it is desirable to estimate the effect of contingencies and plan suitable measures to improve system security/stability. This paper presents an approach for selection of unified power flow controller (UPFC) suitable locations considering normal and network contingencies after evaluating the degree of severity of the contingencies. The ranking is evaluated using composite criteria based fuzzy logic for eliminating masking effect. The fuzzy approach, in addition to real power loadings and bus voltage violations, voltage stability indices at the load buses also used as the post-contingent quantities to evaluate the network contingency ranking. The selection of UPFC suitable locations uses the criteria on the basis of improved system security/stability. The proposed approach for selection of UPFC suitable locations has been tested under simulated conditions on a few power systems and the results for a 24-node real-life equivalent EHV power network and 39-node New England (modified) test system are presented for illustration purposes.
Resumo:
Syntheses of manganese(I)-based molecular squares have been accomplished in facile one-pot reaction conditions at room temperature. Self-assembly of eight components has resulted in the formation of M4L4-type metallacyclophanes [Mn(CO)(3)Br(mu-L)(4) (1-3) using pentacarbonylbromomanganese as metal precursor and rigid azine ligands such as pyrazine, 4,4'-bipyridine, and trans-1,2-bis(4pyridyl)ethylene, respectively, as bridging ligands. The metallacyclophanes have been characterized on the basis of IR, NMR, and UV-vis spectroscopic techniques and single-crystal X-ray diffraction methods.