244 resultados para non-glycosidic iridoids
Resumo:
A Linear Processing Complex Orthogonal Design (LPCOD) is a p x n matrix epsilon, (p >= n) in k complex indeterminates x(1), x(2),..., x(k) such that (i) the entries of epsilon are complex linear combinations of 0, +/- x(i), i = 1,..., k and their conjugates, (ii) epsilon(H)epsilon = D, where epsilon(H) is the Hermitian (conjugate transpose) of epsilon and D is a diagonal matrix with the (i, i)-th diagonal element of the form l(1)((i))vertical bar x(1)vertical bar(2) + l(2)((i))vertical bar x(2)vertical bar(2)+...+ l(k)((i))vertical bar x(k)vertical bar(2) where l(j)((i)), i = 1, 2,..., n, j = 1, 2,...,k are strictly positive real numbers and the condition l(1)((i)) = l(2)((i)) = ... = l(k)((i)), called the equal-weights condition, holds for all values of i. For square designs it is known. that whenever a LPCOD exists without the equal-weights condition satisfied then there exists another LPCOD with identical parameters with l(1)((i)) = l(2)((i)) = ... = l(k)((i)) = 1. This implies that the maximum possible rate for square LPCODs without the equal-weights condition is the same as that or square LPCODs with equal-weights condition. In this paper, this result is extended to a subclass of non-square LPCODs. It is shown that, a set of sufficient conditions is identified such that whenever a non-square (p > n) LPCOD satisfies these sufficient conditions and do not satisfy the equal-weights condition, then there exists another LPCOD with the same parameters n, k and p in the same complex indeterminates with l(1)((i)) = l(2)((i)) = ... = l(k)((i)) = 1.
Resumo:
This article intends to cover two aspects of non-segmented negative sense RNA viruses. In the initial section, the strategy employed by these viruses to replicate their genomes is discussed. This would help in understanding the later section in which the use of these viruses as vaccine vectors has been discussed. For the description of the replication strategy which encompasses virus genome transcription and genome replication carried out by the same RNA dependent RNA polymerase complex, a member of the prototype rhabdovirus family - Chandipura virus has been chosen as an example to illustrate the complex nature of the two processes and their regulation. In the discussion on these viruses serving as vectors for carrying vaccine antigen genes, emphasis has been laid on describing the progress made in using the attenuated viruses as vectors and a description of the systems in which the efficiency of immune responses has been tested.
Resumo:
In this paper, the nonlocal elasticity theory has been incorporated into classical Euler-Bernoulli rod model to capture unique features of the nanorods under the umbrella of continuum mechanics theory. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behaviors of nanorods from those of macroscopic rods. Nonlocal Euler-Bernoulli bar model is developed for nanorods. Explicit expressions are derived for wavenumbers and wave speeds of nanorods. The analysis shows that the wave characteristics are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial wave mode where no wave propagation occurs. This is manifested in the spectrum cures as the region where the wavenumber tends to infinite (or wave speed tends to zero). The results can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Within the Grassmannian U(2N)/U(N) x U(N) nonlinear sigma-model representation of localization, one can study the low-energy dynamics of both a free and interacting electron gas. We study the crossover between these two fundamentally different physical problems. We show how the topological arguments for the exact quantization of the Hall conductance are extended to include the Coulomb interaction problem. We discuss dynamical scaling and make contact with the theory of variable range hopping. (C) 2005 Pleiades Publishing, Inc.
Resumo:
The use of stereochemically constrained amino acids permits the design of short peptides as models for protein secondary structures. Amino acid residues that are restrained to a limited range of backbone torsion angles (ϕ-ψ) may be used as folding nuclei in the design of helices and β-hairpins. α-Amino-isobutyric acid (Aib) and related Cαα dialkylated residues are strong promoters of helix formation, as exemplified by a large body of experimentally determined structures of helical peptides. DPro-Xxx sequences strongly favor type II’ turn conformations, which serve to nucleate registered β-hairpin formation. Appropriately positioned DPro-Xxx segments may be used to nucleate the formation of multistranded antiparallel β-sheet structures. Mixed (α/β) secondary structures can be generated by linking rigid modules of helices and β-hairpins. The approach of using stereochemically constrained residues promotes folding by limiting the local structural space at specific residues. Several aspects of secondary structure design are outlined in this chapter, along with commonly used methods of spectroscopic characterization.
Resumo:
The possibility of applying two approximate methods for determining the salient features of response of undamped non-linear spring mass systems subjected to a step input, is examined. The results obtained on the basis of these approximate methods are compared with the exact results that are available for some particular types of spring characteristics. The extension of the approximate methods for non-linear systems with general polynomial restoring force characteristics is indicated.
Resumo:
An exact expression for the frequency of a non-linear cubic spring mass system is obtained considering the effect of static deflection. An alternative expression for the approximate frequency is also obtained by the direct linearization procedure; it is shown that this is very accurate as compared with the exact method. This approximate frequency equation is used to explain a “dual behaviour” of the frequency amplitude curves.
Resumo:
The present paper investigates the nature of the fluid flow when a spheroid is suspended in an infinitely extending elastico-viscous fluid defined by the constitutive equations given by Oldroyd or Rivlin and Ericksen, and is made to perform small amplitude oscillations along its axis. The solution of the vector wave equation is expressed in terms of the solution of the corresponding scalar wave equation, without the use of Heine's function or spheroidal wave functions. Two special cases (i) a sphere and (ii) a spheroid of small ellipticity, are studied in detail.
Resumo:
A study has been made of the problem of steady, one-dimensional, laminar flame propagation in premixed gases, with the Lewis number differing from (and equal to) unity. Analytical solutions, using the method of matched asymptotic expansions, have been obtained for large activation energies. Numerical solutions have been obtained for a wide range of the reduced activation temperature parameter (n {geometrically equal to} E/RTb), and the Lewis number δ. The studies reveal that the flame speed eigenvalue is linear in Lewis number for first order and quadratic in Lewis number for second order reactions. For a quick determination of flame speeds, with reasonable accuracy, a simple rule, expressing the flame speed eigenvalue as a function of the Lewis number and the centroid of the reaction rate function, is proposed. Comparisons have been made with some of the earlier works, for both first and second order reactions.
Resumo:
The transient response spectrum of a cubic spring mass system subjected to a step function input is obtained. An approximate method is adopted where non-linear restoring force characteristic is replaced by two linear segments, so that the mean square error between them is a minimum. The effect of viscous damping on the peak response is also discussed for various values of the damping constant and the non-linearity restoring force parameter.
Resumo:
Equations proposed in previous work on the non-linear motion of a string show a basic disagreement, which is here traced to an assumption about the longitudinal displacement u. It is shown that it is neither necessary nor justifiable to assume that u is zero; and also that the velocity of propagation of u disturbances in a string is different from that in an infinite medium, although this difference is usually negligible. After formulating the exact equations of motion for the string, a systematic procedure is described for obtaining approximations to these equations to any order, making only the assumption that the strain in the material of the string is small. The lowest order equations in this scheme are non-linear, and are used to describe the response of a string near resonance. Finally, it is shown that in the absence of damping, planar motion of a string is always unstable at sufficiently high amplitudes, the critical amplitude falling to zero at the natural frequency and its subharmonics. The effect of slight damping on this instability is also discussed.
Resumo:
In this paper, a new approach to the study of non-linear, non-autonomous systems is presented. The method outlined is based on the idea of solving the governing differential equations of order n by a process of successive reduction of their order. This is achieved by the use of “differential transformation functions”. The value of the technique presented in the study of problems arising in the field of non-linear mechanics and the like, is illustrated by means of suitable examples drawn from different fields such as vibrations, rigid body dynamics, etc.
Resumo:
In this paper, a method of arriving at transformations which convert a class of non-linear systems into equivalent linear systems, has been presented along with suitable examples, which illustrate its application.
Resumo:
This paper compares, in a general way, the predictions of the constitutive equations given by Rivlin and Ericksen, Oldroyd, and Walters. Whether we consider the rotational problems in cylindrical co-ordinates or in spherical polar co-ordinates, the effect of the non-Newtonicity on the secondary flows is collected in a single parameterα which can be explicitly expressed in terms of the non-Newtonian parameters that occur in each of the above-mentioned constitutive equations. Thus, for a given value ofα, all the three fluids will have identical secondary flows. It is only through the study of appropriate normal stresses that a Rivlin-Ericksen fluid can be distinguished from the other two fluids which are indistinguishable as long as this non-Newtonian parameter has the same value.