282 resultados para modulus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical properties of composites of polymethylmethacrylate (PMMA) with two-dimensional graphene-like boron nitride (BN) have been investigated to explore the dependence of the properties on the number of BN layers. This study demonstrates that significantly improved mechanical properties are exhibited by the composite with the fewest number of BN layers. Thus, with incorporation of three BN layers, the hardness and elastic modulus of the composite showed an increase of 125% and 130%, respectively, relative to pure PMMA. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Instability and dewetting engendered by the van der Waals force in soft thin (<100 nm) linear viscoelastic solid (e. g., elastomeric gel) films on uniform and patterned surfaces are explored. Linear stability analysis shows that, although the elasticity of the film controls the onset of instability and the corresponding critical wavelength, the dominant length-scale remains invariant with the elastic modulus of the film. The unstable modes are found to be long-wave, for which a nonlinear long-wave analysis and simulations are performed to uncover the dynamics and morphology of dewetting. The stored elastic energy slows down the temporal growth of instability significantly. The simulations also show that a thermodynamically stable film with zero-frequency elasticity can be made unstable in the presence of physico-chemical defects on the substrate and can follow an entirely different pathway with far fewer holes as compared to the viscous films. Further, the elastic restoring force can retard the growth of a depression adjacent to the hole-rim and thus suppress the formation of satellite holes bordering the primary holes. These findings are in contrast to the dewetting of viscoelastic liquid films where nonzero frequency elasticity accelerates the film rupture and promotes the secondary instabilities. Thus, the zero-frequency elasticity can play a major role in imposing a better-defined long-range order to the dewetted structures by arresting the secondary instabilities. (C) 2011 American Institute of Physics. doi: 10.1063/1.3554748]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the transparent glasses in the composition 0.5Cs(2)O-0.5Li(2)O-3B(2)O(3) (CLBO) were investigated in the 100 Hz - 10 MHz frequency range. The dielectric constant for the as-quenched glass increased with increasing temperature, exhibiting anomalies in the vicinity of the glass transition and crystallization temperatures. The temperature coefficient of dielectric constant was estimated (35 +/- 2 ppm. K-1) using Havinga's formula. The dielectric loss at 313 K is 0.005 +/- 0.0005 at all the frequencies understudy. The activation energy associated with the electrical relaxation determined from the electric modulus spectra was found to be 1.73 +/- 0.05 eV, close to that of the activation energy obtained for DC conductivity (1.6 +/- 0.06 eV). The frequency dependent electrical conductivity was analyzed using Jonscher's power law. The combination of these dielectric characteristics suggests that these are good candidates for electrical energy storage device applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hard, low stress diamond-like carbon films have been deposited by plasma assisted chemical vapour deposition technique, The various substrates include soft IR components like ZnS and ZnSe windows, Gaseous precursors such as propene, ethyl alcohol and acetone have been used to synthesize the films to study the nature of precursors in determining the film compatibility with the underlying component (substrate), The residual compressive stresses, the Young's modulus and the adhesion energy of the films have been estimated to be 10(10) dynes/cm(2), 10(10) N/m(2) and 1000 ergs/cm(2) respectively. To alleviate film failure, a study on the effects of additive gases such as hydrogen and the use of buffer layers such as ZrO2, has been undertaken, The diamond-like carbon films produced here are hard (5000 kg/mm(2)), specularly smooth in the wavelength region from 2.5 mu m to 20 mu m, with no microstructural features and have excellent adhesion on ZnS and ZnSe windows. The figure of merit of these films for aero-space applications has been evaluated by subjecting the film-buffer layer ZnS or ZnSe composite stack to wind, dust and rain erosion studies and by establishing the integrity of the specular IR transmittance of the stack upto 16 or 20 mu m as the case may be.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium nitride films of a thickness of similar to 1.5 mu m were deposited on amorphous and crystalline substrates by DC reactive magnetron sputtering at ambient temperature with 100% nitrogen in the sputter gas. The growth of nanostructured, i.e. crystalline nano-grain sized, films at ambient temperature is demonstrated. The microstructure of the films grown on crystalline substrates reveals a larger grain size/crystallite size than that of the films deposited on amorphous substrates. Specular reflectance measurements on films deposited on different substrates indicate that the position of the Ti-N 2s band at 2.33 eV is substrate-dependent, indicating substrate-mediated stoichiometry. This clearly demonstrates that not only structure and microstructure, but also chemical composition of the films is substrate-influenced. The films deposited on amorphous substrates display lower hardness and modulus values than the films deposited on crystalline substrates, with the highest value of hardness being 19 GPa on a lanthanum aluminate substrate. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transparent glasses in the system 0.5Li(2)O-0.5M(2)O-2B(2)O(3) (M = Li, Na and K) were fabricated via the conventional melt quenching technique. The amorphous and glassy nature of the samples was confirmed via the X-ray powder diffraction and the differential scanning calorimetry, respectively. The frequency and temperature dependent characteristics of the dielectric relaxation and the electrical conductivity were investigated in the 100 Hz-10 MHz frequency range. The imaginary part of the electric modulus spectra was modeled using an approximate solution of Kohrausch-Williams-Watts relation. The stretching exponent, (3, was found to be temperature independent for 0.5Li(2)O-0.5Na(2)O-2B(2)O(3) (LNBO) glasses. The activation energy associated with DC conduction was found to be higher (1.25 eV) for 0.5Li(2)O-0.5K(2)O-2B(2)O(3) (LKBO) glasses than that of the other glass systems under study. This is attributed to the mixed cation effect. (C) 2011 Elsevier By. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rammed-earth wall is a monolithic construction made by compacting processed soil in progressive layers in a rigid formwork. There is a growing interest in using this low-embodied-carbon building material in buildings. The paper investigates the strength and structural behavior of story-high cement-stabilized rammed-earth (CSRE) walls, reviews literature on the strength of CSRE, and discusses results of the compressive strength of CSRE prisms, wallettes, and story-high walls. The strength of the story-high wall was compared with the strength of wallettes and prisms. There is a nearly 30% reduction in strength as the height-to-thickness ratio increases from about 5 to 20. The ultimate compressive strength of CSRE walls predicted using the tangent modulus theory is in close agreement with the experimental values. The shear failures noticed in the story-high walls resemble the shear failures of short-height prism and wallette specimens. The paper ends with a discussion of structural design and characteristic compressive strength of CSRE walls. DOI: 10.1061/(ASCE)MT.1943-5533.0000155. (C) 2011 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synchrotron-based X-ray diffraction was used to study the phase diagrams and determine the compressibilities of the pyrochlore rare-earth titanates Ho2Ti2O7, Y2Ti2O7 and Tb2Ti2O7 to 50GPa. The bulk moduli of the cubic phase of these materials were calculated to be 213 +/- 2, 204 +/- 3 and 199 +/- 1GPa, respectively. The onset of a structural phase change from cubic to monoclinic was observed near 37, 42 and 39GPa, respectively. The bulk modulus for the high pressure monoclinic phase of Y2Ti2O7 has been determined to be 185 +/- 3GPa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a model for concentrated emulsions based on the speculation that a macroscopic shear strain does not produce an affine deformation in the randomly close-packed droplet structure. The model yields an anomalous contribution to the complex dynamic shear modulus that varies as the square root of frequency. We test this prediction using a novel light scattering technique to measure the dynamic shear modulus, and directly observe the predicted behavior over six decades of frequency and a wide range of volume fractions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dielectric properties of potassium titanyl phosphate have been investigated as a function of thickness and frequency, as well as annealing treatment under various atmospheres. The low frequency dielectric constant of KTP crystals is shown to depend upon the sample thickness, and this feature is attributed to the existence of surface layers. The frequency-dependent dielectric response of KTP exhibits a non-Debye type relaxation, with a distribution of relaxation times. The dielectric behavior of KTP samples annealed in various atmospheres shows that the low frequency dielectric constant is influenced by the contribution from the space charge layers. Prolonged annealing of the samples leads to a surface degradation, resulting in the formation of a surface layer of lower dielectric constant. This surface degradation is least when annealed in the presence of dry oxygen. From the analysis of the dielectric data using complex electric modulus, alpha(m) has been evaluated for the virgin and annealed samples. (C) 1996 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bending rigidity kappa of bilayer membranes was studied with coarse grained soft repulsive potentials using dissipative particle dynamics (DPD) simulations. Using a modified Andersen barostat to maintain the bilayers in a tensionless state, the bending rigidity was obtained from a Fourier analysis of the height fluctuations. From simulations carried out over a wide range of membrane thickness, the continuum scaling relation kappa proportional to d(2) was captured for both the L-alpha and L-beta phases. For membranes with 4 to 6 tail beads, the bending rigidity in the L-beta phase was found to be 10-15 times higher than that observed for the L-alpha phase. From the quadratic scalings obtained, a six fold increase in the area stretch modulus, k(A) was observed across the transition. The magnitude of increase in both kappa and k(A) from the L-alpha to the L-beta phase is consistent with current experimental observations in lipid bilayers and to our knowledge provides for the first time a direct evaluation of the mechanical properties in the L-beta phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonlinear static and dynamic response analyses of a clamped. rectangular composite plate resting on a two-parameter elastic foundation have been studied using von Karman's relations. Incorporating the material damping, the governing coupled, nonlinear partial differential equations are obtained for the plate under step pressure pulse load excitation. These equations have been solved by a one-term solution and by applying Galerkin's technique to the deflection equation. This yields an ordinary nonlinear differential equation in time. The nonlinear static solution is obtained by neglecting the time-dependent variables. Thc nonlinear dynamic damped response is obtained by applying the ultraspherical polynomial approximation (UPA) technique. The influences of foundation modulus, shear modulus, orthotropy, etc. upon the nonlinear static and dynamic responses have been presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a plane stress solution for the interaction analysis of strip footing resting on (i) a non-homogeneous elastic half-plane and (ii) a non-homogeneous elastic layer resting on a rigid stratum has been presented. The analysis has been done using a combined analytical and FEM method in which the discretization of the half-plane is not required and thereby minimizes the computational efforts considerably. The contact pressure distribution and the settlement profile for the selected cases of varying modulus half-plane, which has more relevance to foundation engineering, have been given. Experimental verification through a photoelastic method of stress analysis has been carried out for the case of footing on Gibson elastic half-plane, and the contact pressure distribution thus obtained has been compared with the theoretical results. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonconservatively loaded columns. which have stochastically distributed material property values and stochastic loadings in space are considered. Young's modulus and mass density are treated to constitute random fields. The support stiffness coefficient and tip follower load are considered to be random variables. The fluctuations of external and distributed loadings are considered to constitute a random field. The variational formulation is adopted to get the differential equation and boundary conditions. The non self-adjoint operators are used at the boundary of the regularity domain. The statistics of vibration frequencies and modes are obtained using the standard perturbation method, by treating the fluctuations to be stochastic perturbations. Linear dependence of vibration and stability parameters over property value fluctuations and loading fluctuations are assumed. Bounds for the statistics of vibration frequencies are obtained. The critical load is first evaluated for the averaged problem and the corresponding eigenvalue statistics are sought. Then, the frequency equation is employed to transform the eigenvalue statistics to critical load statistics. Specialization of the general procedure to Beck, Leipholz and Pfluger columns is carried out. For Pfluger column, nonlinear transformations are avoided by directly expressing the critical load statistics in terms of input variable statistics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Leipholz column which is having the Young modulus and mass per unit length as stochastic processes and also the distributed tangential follower load behaving stochastically is considered. The non self-adjoint differential equation and boundary conditions are considered to have random field coefficients. The standard perturbation method is employed. The non self-adjoint operators are used within the regularity domain. Full covariance structure of the free vibration eigenvalues and critical loads is derived in terms of second order properties of input random fields characterizing the system parameter fluctuations. The mean value of critical load is calculated using the averaged problem and the corresponding eigenvalue statistics are sought. Through the frequency equation a transformation is done to yield load parameter statistics. A numerical study incorporating commonly observed correlation models is reported which illustrates the full potentials of the derived expressions.