126 resultados para metal matrix composites


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial infection remains an important risk factor after orthopedic surgery. The present paper reports the synthesis of hydroxyapatite-silver (HA-Ag) and carbon nanotube-silver (CNT-Ag) composites via spark plasma sintering (SPS) route. The retention of the initial phases after SPS was confirmed by phase analysis using X-ray diffraction and Raman spectroscopy. Energy dispersive spectrum analysis showed that Ag was distributed uniformly in the CNT/HA matrix. The breakage of CNTs into spheroid particles at higher temperatures (1700 degrees C) is attributed to the Rayleigh instability criterion. Mechanical properties (hardness and elastic modulus) of the samples were evaluated using nanoindentation testing. Ag reinforcement resulted in the enhancement of hardness (by similar to 15%) and elastic modulus (similar to 5%) of HA samples, whereas Ag reinforcement in CNT, Ag addition does not have much effect on hardness (0.3 GPa) and elastic modulus (5 GPa). The antibacterial tests performed using Escherichia coli and Staphylococcus epidermidis showed significant decrease (by similar to 65-86%) in the number of adhered bacteria in HA/CNT composites reinforced with 5% Ag nanoparticles. Thus, Ag-reinforced HA/CNT can serve as potential antibacterial biocomposites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work deals with the prediction of stiffness of an Indian nanoclay-reinforced polypropylene composite (that can be termed as a nanocomposite) using a Monte Carlo finite element analysis (FEA) technique. Nanocomposite samples are at first prepared in the laboratory using a torque rheometer for achieving desirable dispersion of nanoclay during master batch preparation followed up with extrusion for the fabrication of tensile test dog-bone specimens. It has been observed through SEM (scanning electron microscopy) images of the prepared nanocomposite containing a given percentage (3–9% by weight) of the considered nanoclay that nanoclay platelets tend to remain in clusters. By ascertaining the average size of these nanoclay clusters from the images mentioned, a planar finite element model is created in which nanoclay groups and polymer matrix are modeled as separate entities assuming a given homogeneous distribution of the nanoclay clusters. Using a Monte Carlo simulation procedure, the distribution of nanoclay is varied randomly in an automated manner in a commercial FEA code, and virtual tensile tests are performed for computing the linear stiffness for each case. Values of computed stiffness modulus of highest frequency for nanocomposites with different nanoclay contents correspond well with the experimentally obtained measures of stiffness establishing the effectiveness of the present approach for further applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental inputs can improve the level of innovation by interconnecting them with traditional inputs regarding the properties of materials and processes as a strategic eco-design procedure. Advanced engineered polymer composites are needed to meet the diverse needs of users for high-performance automotive, construction and commodity products that simultaneously maximize the sustainability of forest resources. In the current work, wood polymer composites (WPC) are studied to promote long-term resource sustainability and to decrease environmental impacts relative to those of existing products. A series of polypropylene wood–fiber composite materials having 20, 30, 40 and 50 wt. % of wood–fibers were prepared using twin-screw extruder and injection molding machine. Tensile and flexural properties of the composites were determined. Polypropylene (PP) as a matrix used in this study is a thermoplastic material, which is recyclable. Suitability of the prepared composites as a sustainable product is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the microstructural evolution and mechanical properties of extruded Mg composites containing micro-Ti particulates hybridized with varying contents of nano-B4C are investigated, and compared with Mg-5.6Ti. Microstructural characterization showed the presence of uniformly distributed micro-Ti particles embedded with nano-B4C particulates that resulted in significant grain refinement. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + x-B4C)(BM) hybrid composites showed that the addition of hybridized particle resulted in relatively more recrystallized grains, realignment of basal planes and extension of weak basal fibre texture when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated improved strength with ductility retention in Mg-(5.6Ti + x-B4C)(BM) hybrid composites. When compared to Mg-5.6Ti, the superior strength properties of the Mg-(5.6Ti + xB(4)C)(BM) hybrid composites are attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles, better interfacial bonding between the matrix and the reinforcement particles and the matrix grain refinement achieved by nano-B4C addition. The ductility enhancement obtained in hybrid composites can be attributed to the fibre texture spread and favourable basal plane orientation achieved due to nano B4C addition. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plain epoxy resins or resin impregnated cellulose have found application as electrical insulation in power equipment. In the past, their performance was improved by the use of inorganic oxide fillers of microscopic dimensions. In the recent past nano-particle doped epoxy insulation came into use with a view to further enhance the dielectric properties. This paper reports dielectric investigations into epoxy nano-composites based on a class of metal oxides, Al2O3 and SiO2. In particular, consideration has been given to the partial discharge performance and electrical breakdown under different voltage profiles as a function of the volumetric composition of the nano-particles in epoxy resin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) (PCL) is an aliphatic polyester widely used for biomedical applications but lacks the mechanical properties desired for many load-bearing orthopedic applications. The objective of this study was to prepare and characterize PCL composites incorporating multiwall carbon nanotubes (MWNTs) with different surface functional groups. PCL composites were prepared by melt-mixing with three different types of MWNTs: pristine (pMWNT), amine functionalized (aMWNT), and carboxyl functionalized (cMWNT). Melt rheology and scanning electron microscopy indicated good dispersion of the nanotubes in the matrix. Tensile strength and elastic modulus of the polymer was significantly increased by the incorporation of MWNTs and further enhanced by favorable interactions between PCL and aMWNTs. Thermal analysis revealed that MWNTs act as heterogeneous nucleation sites for crystallization of PCL and increase polymer crystallinity. Incorporation of functionalized MWNTs increased the surface water wettability of PCL. Osteoblast proliferation and differentiation was significantly enhanced on functionalized composites. aMWNT composites also exhibited the best bactericidal response. This study demonstrates that surface functionalization of MWNTs profoundly influences the properties of PCL and amine-functionalization offers the optimal combination of mechanical properties, osteogenesis and antimicrobial response. These results have important implications for designing nanocomposites for use in orthopedics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanosized cerium and nitrogen co-doped TiO2 (Ce-TiO2-xNx) was synthesized by sol gel method and characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), FESEM, Fourier transform infrared, N-2 adsorption and desorption methods, photoluminescence and ultraviolet-visible (UV-vis) DRS techniques. PXRD analysis shows the dopant decreases the crystallite sizes and slows the crystallization of the titania matrix. XPS confirm the existence of cerium ion in +3 or +4 state, and nitrogen in -3 state in Ce-TiO2-xNx. The modified surface of TiO2 provides highly active sites for the dyes at the periphery of the Ce-O-Ti interface and also inhibits Ce particles from sintering. UV-visible DRS studies show that the metal-metal charge transfer (MMCT) of Ti/Ce assembly (Ti4+/Ce3+ -> Ti3+/Ce4+) is responsible for the visible light photocatalytic activity. Photoluminescence was used to determine the effect of cerium ion on the electron-hole pair separation between the two interfaces Ce-TiO2-xNx and Ce2O3. This separation increases with the increase of cerium and nitrogen ion concentrations of doped samples. The degradation kinetics of methylene blue and methyl violet dyes in the presence of sol gel TiO2, Ce-TiO2-xNx and commercial Degussa P25 was determined. The higher visible light activity of Ce-TiO2-xNx was due to the participation of MMCT and interfacial charge transfer mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractal dimension based damage detection method is investigated for a composite plate with random material properties. Composite material shows spatially varying random material properties because of complex manufacturing processes. Matrix cracks are considered as damage in the composite plate. Such cracks are often seen as the initial damage mechanism in composites under fatigue loading and also occur due to low velocity impact. Static deflection of the cantilevered composite plate with uniform loading is calculated using the finite element method. Damage detection is carried out based on sliding window fractal dimension operator using the static deflection. Two dimensional homogeneous Gaussian random field is generated using Karhunen-Loeve (KL) expansion to represent the spatial variation of composite material property. The robustness of fractal dimension based damage detection method is demonstrated considering the composite material properties as a two dimensional random field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-organic frameworks (MOFs) and boron nitride both possess novel properties, the former associated with microporosity and the latter with good mechanical properties. We have synthesized composites of the imidazolate based MOF, ZIF-8, and few-layer BN in order to see whether we can incorporate the properties of both these materials in the composites. The composites so prepared between BN nanosheets and ZIF-8 have compositions ZIF-1BN, ZIF-2BN, ZIF-3BN and similar to ZIF-4BN. The composites have been characterized by PXRD, TGA, XPS, electron microscopy, IR, Raman and solid state NMR spectroscopy. The composites possess good surface areas, the actual value decreasing only slightly with the increase in the BN content. The CO2 uptake remains nearly the same in the composites as in the parent ZIF-8. More importantly, the addition of BN markedly improves the mechanical properties of ZIF-8, a feature that is much desired in MOFs. Observation of microporous features along with improved mechanical properties in a MOF is indeed noteworthy. Such manipulation of properties can be profitably exploited in practical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractal dimension based damage detection method is studied for a composite structure with random material properties. A composite plate with localized matrix crack is considered. Matrix cracks are often seen as the initial damage mechanism in composites. Fractal dimension based method is applied to the static deformation curve of the structure to detect localized damage. Static deflection of a cantilevered composite plate under uniform loading is calculated using the finite element method. Composite material shows spatially varying random material properties because of complex manufacturing processes. Spatial variation of material property is represented as a two dimensional homogeneous Gaussian random field. Karhunen-Loeve (KL) expansion is used to generate a random field. The robustness of fractal dimension based damage detection methods is studied considering the composite plate with spatial variation in material properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, branched poly(ethyleneimine), BPEI, was synthesized from carboxylic acid terminated multi-walled carbon nanotubes (c-MWNTs) and characterized using FTIR, TEM and TGA. The BPEI was then chemically grafted onto MWNTs to enhance the interfacial adhesion with the epoxy matrix. The epoxy composites with c-MWNTs and the BPEI-g-MWNTs were prepared using a sonication and mechanical stirring method, followed by curing at 100 degrees C and post-curing at 120 degrees C. The dynamic mechanical thermal analysis showed an impressive 49% increment in the storage elastic modulus in the composites. In addition, the nanoindentation on the composites exhibited significant improvement in the hardness and decrease in the plasticity index in the presence of the BPEI-g-MWNTs. Thus, epoxy composites with BPEI-g-MWNTs can be further explored as self-healing materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic polymer metal composites (IPMC) actuator for flapping insect scale wing is advantageous due to its low mass, high deflection and simple actuation mechanism. Some of the factors that affect the actuation of IPMC are the amount of hydration in the polymer membrane and the environmental conditions such as temperature, humidity etc. In structural design, the attachment of wing on the IPMC actuators is an important concern as the attached wing increases the mass of actuators thereby affecting the parameters like displacement, stiffness and resonant frequencies. Such IPMC actuators have to produce sufficient actuation force and frequency to lift and flap the attached wing. Therefore, it is relevant to study the influence of attachment of wing on the actuator parameters (displacement, resonant frequency, block force and stiffness) and performance of the actuators. This paper is divided into two parts; the first part deals with the modeling of the IPMC actuators for its effect on the level of water uptake and temperature using energy based method. The modeling method adapted is validated with the experimental procedure used to actuate the IPMC. The second part deals with the experimental analysis of IPMC actuation at dry, wet and in water conditions. The effect of end mass loading on the performance of 20 Hz, high frequency actuator (HFA) and 8.7 Hz, low frequency IPMC actuators (LFA) and sensors is studied. The IPMC actuators are attached with IPMC flapping wing at its free end and performance analysis on the attached wing is also carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher manganese silicide (HMS) based alloys with eutectic composition (Si-33.3 at% Mn) were prepared by arc-melting, melt-spinning and ball milling in order to evaluate the effect of microstructure on the thermal conductivity. Powder X-ray diffraction, SEM, EPMA and TEM analysis confirmed the presence of Si as a secondary phase distributed in the HMS matrix phase. Thermal properties of the samples were studied in the temperature range of 300-800 K. The microstructure refinement resulting from ball milling leads to a decrease of the thermal conductivity from 4.4 W/mK to 1.9 W/mK, whereas meltspinning is inefficient to this respect. The results show an opportunity to produce bulk higher manganese silicide alloys with reduced thermal conductivity in order to enhance its thermoelectric performance. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the emergence of scientific interest in graphene oxide (GO) in recent times, researchers have endeavored to incorporate GO in thermoset polymeric matrix to develop composites with extraordinary set of properties. The current state of research in graphene/thermoset polymer composites is highlighted here with a focus on the role of interface in dictating the overall properties of the composites. Different strategies like covalent and non-covalent functionalization of GO have been discussed with respect to improvement in mechanical, electrical, thermal and rheological properties. In addition, future prospects have been outlined. By assessing the current state of research in graphene/thermoset composites, it is obvious that graphene derivatives are promising materials in enhancing the structural properties of the nanocomposites at extremely low levels of filler loading. This opens new avenues in designing lightweight composites for myriad applications and by tailoring the interfacial adhesion with the polymer, ordered structure can be achieved at macroscopic processing scales. (C) 2015 Elsevier Ltd. All rights reserved.