513 resultados para metal contamination
Resumo:
Abstract is not available.
Resumo:
Adsorption of oxygen on Ni, Cu, Pd, Ag, and Au surfaces has been investigated by employing UV and X-ray photoelectron spectrscopy as well as electron energy loss spectroscopy (EELS). Molecularly chemisorbed (singlet) oxygen is found on Ni, Cu, Ag, and Au surfaces showing features such as stabilization of the rB* orbital, destabilization of the .nu orbital, higher O(1s) binding energy than the atomic species, and a band 2-3 eV below the Fermi level due to metal d-O(2p)u* interaction. 0-0 and metal-oxygen stretching frequencies have been observed in EELS. Physical adsorption of O2 is found to occur on Pd and Ni surfaces, only at high exposures in the latter case. Physical adsorption and multilayer condensation of CO, on metal surfaces are distinguished by characteristic relaxation shifts in UPS as well as O(1s) binding energies. Adsorption of CO on a Ni surface covered with presorbed atomic oxygen gives rise to C02.
Resumo:
The electronic structure of sodium tungsten bronzes NaxWO3 is investigated by high-resolution angle-resolved photoemission spectroscopy (ARPES). The ARPES spectra measured in both insulating and metallic phases of NaxWO3 reveals the origin of metal-insulator transition (MIT) in sodium tungsten bronze system. It is found that in insulating NaxWO3 the states near the Fermi level (E-F) are localized due to the strong disorder caused by the random distribution of Na+ ions in WO3 lattice. Due to the presence of disorder and long-range Coulomb interaction of conduction electrons, a soft Coulomb gap arises, where the density of states vanishes exactly at E-F. In the metallic regime the states near E-F are populated and the Fermi level shifts upward rigidly with increasing electron doping (x). Volume of electron-like Fermi surface (FS) at the Gamma(X) point of the Brillouin zone gradually increases with increasing Na concentration due to W 5d t(2g) band filling. A rigid shift of the Fermi energy is found to give a qualitatively good description of the Fermi surface evolution. As we move from bulk-sensitive to more surface sensitive photon energy, we found the emergence of Fermi surfaces at X(M) and M(R) point similar to the one at the Gamma(X) point in the metallic regime, suggesting that the reconstruction of surface was due to rotation/deformation of WO6 octahedra.
Resumo:
Ternary 3d-metal complexes of formulation [M(Tp(Ph))(py-nap)](ClO4)(1-3), where M is Co(II) (1), Cu(II) (2), and Zn(II) (3); Tp(Ph) is anionic tris (3-phenylpyrazolyl)borate; and py-nap is a pyridyl ligand with a conjugated 1,8-naphthalimide moiety, have been prepared from the reaction of metal perchlorate with KTp(Ph) and py-nap in CH2Cl2. The complexes have been characterized from analytical and physicochemical data. The complexes are stable in solution as evidenced from the electrospray ionization mass spectrometry data. The complexes show good binding propensity with calf thymus (CT) DNA, giving binding constant (K-b) values of similar to 10(5) M-1 and a molecular ``light-switch'' effect that results in an enhancement of the emission intensity of the naphthalimide chromophore on binding to CT DNA. The complexes do not show any hydrolytic cleavage of DNA. They show poor chemical nuclease activity in the presence of 3-mercaptopropionic acid or hydrogen peroxide (H2O2). The Co(II) and Cu(II) complexes exhibit oxidative pUC19 DNA cleavage activity in UV-A light of 365 rim. The Zn(II) complex shows moderate DNA photocleavage activity at 365 nm. The Cu(II)complex 2 displays photoinduced DNA cleavage activity in red light of 647.1 nm and 676 rim and near-IR light of >750 rim. A mechanistic studyin UV-A and visible light suggests the involvement of the hydroxyl radical as the reactive species in the DNA photocleavage reactions. The complexes also show good bovine serum albumin (BSA) protein binding propensity, giving K-BSA values of similar to 10(5) M-1. Complexes 1 and 2 display significant photoinduced BSA cleavage activity in UV-A light. The Co(II) complex 1 shows a significant photocytotoxic effect in HeLa cervical cancer cells on exposure to UV-A light of 365 nm, giving an IC50 value of 32 mu M. The IC50 value for the py-nap ligand alone is 41.42 mu m in UV-A light. The IC50 value is >200 mu M in the dark, indicating poor dark toxicity of 1. The Cu(II) complex 2 exhibits moderate photocytotoxicity and significant dark toxicity, giving IC50 values of 18.6 mu m and 29.7 mu m in UV-A light and in the dark, respectively.
Resumo:
Abstract is not available.
Resumo:
The complexes of monothiobiuret with Co(II), Ni(II), Cd(II) and Hg(II) chlorides are investigated. The ligand is suggested to be unidentate bonding through sulfur in Co(II) and Hg(II) complexes and bidentate bonding through both sulfur and oxygen atoms in the other two complexes.
Resumo:
The behavior of the chelate, ferric dipivaloylmethide, Fe(DPM)3, in vinyl polymerization systems was investigated. The polymerization was found to be of free-radical nature. The rate of polymerization was proportional to the square root of the concentration of the chelate. The monomer exponent was close to 1.5 for the Fe(DPM)3-initiated polymerization of styrene and methyl methacrylate. The kinetic and transfer constants and activation energies for these systems have been evaluated. Spectral studies revealed the possibility of a complex formation between the chelate and the monomer. A kinetic scheme for the Fe(DPM)3-initiated polymerization is derived based on this initial complex formation.
Resumo:
The nature of the interaction between the unsaturated monomer and the chelate, Fe(DPM)3, is studied in detail. The interaction is found to occur only in solution. The stoichiometry of interaction and the equilibrium constant are evaluated. With the help of spectral evidence, attempts are made to point out the specific sites of interaction.
Resumo:
The effect of pH and metal ions (Cu2+, Zn2+, Cd2+, Mn2+, Cr3+, Co3+, and Mg2+) on the decyclization reactions of pyridoxal-histamine cyclized Schiff base has been studied using electronic spectroscopy. The study reveals that the cyclization reaction is irreversible with respect to pH and metal ions. Interest in this work derives from the possible involvement of cyclization reactions in the inhibitory activity of a number of pyridoxal-dependent enzymes.
Resumo:
The thermodynamics of tie binding of calcium and magnesium ions to a calcium binding protein from Entamoeba histolytica was investigated by isothermal titration calorimetry (ITC) in 20 mM MOPS buffer (pH 7.0) at 20 degrees C. Enthalpy titration curves of calcium show the presence of four Ca2+ binding sites, There exist two low-affinity sites for Ca2+, both of which are exothermic in nature and with positive cooperative interaction between them. Two other high affinity sites for Ca2+ exist of which one is endothermic and the other exothermic, again with positive cooperative interaction. The binding constants for Ca2+ at the four sites have been verified by a competitive binding assay, where CaBP competes with a chromophoric chelator 5, 5'-Br-2 BAPTA to bind Ca2+ and a Ca2+ titration employing intrinsic tyrosine fluorescence of the protein, The enthalpy of titration of magnesium in the absence of calcium is single site and endothermic in nature. In the case of the titrations performed using protein presaturated with magnesium, the amount of heat produced is altered. Further, the interaction between the high-affinity sites changes to negative cooperativity. No exchange of heat was observed throughout the addition of magnesium in the presence of 1 mM calcium, Titrations performed on a cleaved peptide comprising the N-terminus and the central linker show the existence of two Ca2+ specific sites, These results indicate that this CaBP has one high-affinity Ca-Mg site, one high-affinity Ca-specific site, and two low-affinity Ca-specific sites. The thermodynamic parameters of the binding of these metal ions were used to elucidate the energetics at the individual site(s) and the interactions involved therein at various concentrations of the denaturant, guanidine hydrochloride, ranging from 0.05 to 6.5 M. Unfolding of the protein was also monitored by titration calorimetry as a function of the concentration of the denaturant. These data show that at a GdnHCl concentration of 0.25 M the binding affinity for the Mg2+ ion is lost and there are only two sites which can bind to Ca2+, with substantial loss cooperativity. At concentrations beyond 2.5 M GdnHCl, at which the unfolding of the tertiary structure of this protein is observed by near UV CD spectroscopy, the binding of Ca2+ ions is lost. We thus show that the domain containing the two low-affinity sites is the first to unfold in the presence of GdnHCl. Control experiments with change in ionic strength by addition of KCI in the range 0.25-1 M show the existence of four sites with altered ion binding parameters.
Resumo:
Several metal complexes of three different functionalized salen derivatives have been synthesized. The salens differ in terms of the electrostatic character and the location of the charges. The interactions of such complexes with DNA were first investigated in detail by UV−vis absorption titrimetry. It appears that the DNA binding by most of these compounds is primarily due to a combination of electrostatic and other modes of interactions. The melting temperatures of DNA in the presence of various metal complexes were higher than that of the pure DNA. The presence of additional charge on the central metal ion core in the complex, however, alters the nature of binding. Bis-cationic salen complexes containing central Ni(II) or Mn(III) were found to induce DNA strand scission, especially in the presence of co-oxidant as revealed by plasmid DNA cleavage assay and also on the basis of the autoradiogram obtained from their respective high-resolution sequencing gels. Modest base selectivity was observed in the DNA cleavage reactions. Comparisons of the linearized and supercoiled forms of DNA in the metal complex-mediated cleavage reactions reveal that the supercoiled forms are more susceptible to DNA scission. Under suitable conditions, the DNA cleavage reactions can be induced either by preformed metal complexes or by in situ complexation of the ligand in the presence of the appropriate metal ion. Also revealed was the fact that the analogous complexes containing Cu(II) or Cr(III) did not effect any DNA strand scission under comparable conditions. Salens with pendant negative charges on either side of the precursor salicylaldehyde or ethylenediamine fragments did not bind with DNA. Similarly, metallosalen complexes with net anionic character also failed to induce any DNA modification activities.
Resumo:
Monosulphides of the first-row transition metals have been studied by X-ray and UV photoelectron spectroscopy. Systematics in the valence bands as well as metal and sulphur core levels across the series have been discussed. Exchange splittings and spin-orbit splittings in these compounds have been examined. CuS is found to show features of both S2 and S22.
Resumo:
The nature of coordination in metal monothiocarbamates is shown to depend on the hardness or softness of the metal ton. Thus, the monothiocarbamate ion acts as a monodentate ligand with metal-sulphur bending when the metal ion is a soft acid while it acts as a bidentate ligand when the metal ion is a hard acid; it can exhibit either behaviour when the metal ion is a borderline acid. In dialkyltin and dialkylmonocholorotin complexes, the monothiocarbamate ion acts as a bidentate ligand with strong Sn-S bonding while in trialkyl-or triaryl-tin complexes it acts essentially as a monodentate ligand. Thus, R3Sn(I) seems to be a soft or borderline acid while R2Sn(II) is a hard acid.
Resumo:
The propagation characteristics of electromagnetic waves in a dielectric-lined rectangular metal waveguide have been studied. The lining on the two side walls (E-plane) together with the air space in between them is considered as a homogeneous equivalent dielectric medium whose equivalent dielectric constant is derived by using electrostatic theory. The theoretical work is based on the fact that LSE and LSM modes can be propagated in a rectangular metal waveguide lined in the two longer sides (H-plane) by dielectric lining. Experimental verification of the guide wavelength at 'X', 'ku' and 'Ka' bands and cut-off frequency are reported.
Resumo:
Hybrid semiconductor-metal nanoparticles monolayer of Cadmium Sclenide and gold nanoparticles has been prepared, using Langmuir – Blodgett technique. The near field photoluminescence spectra from such monolayer films, shows red shift similar to 75 meV with respect to CdSe QDs monolayer film and splitting similar to 57 meV. The composite spectra are much broader similar to 330 meV compared to the corresponding emission spectra of CdSe monolayer similar to 165 meV. The possible explanation for the observed features are provided in terms of exciton - Plasmon interaction.