150 resultados para lithium battery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystal (100) wafers of n-InSb were implanted with 50 MeV Li3+ ions at various fluences ranging from 10(10) to 10(14) ions/cm(2) at room temperature. Investigations of the optical, electrical, and structural properties of the as-grown, irradiated, annealed wafers were carried out by infrared and Raman spectroscopies, Hall measurements, and high resolution x-ray diffraction (HRXRD). In the case of samples irradiated with an ion fluence of 1.6x10(14) ions/cm(2), electrical measurements at 80 K reveal that there is a decrease in carrier concentration from 8.5x10(15) (for unirradiated) to 1.1x10(15)/cm(3) and an increase in mobility from 5.4x10(4) to 1.67x10(5) cm(2)/V s. The change in carrier concentration is attributed to the creation of electron trap centers induced by ion beam irradiation and the increase in mobility to the formation of electrical inactive complexes. Nevertheless, even with the irradiation at 1.6x10(14) ions/cm(2) fluence the crystalline quality remains largely unaffected, as is seen from HRXRD and Raman studies. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation of resistivity of the lithium fast-ion conductor Li3+y Ge1−yO4 (y = 0.25, 0.6, 0.72) has been studied with hydrostatic pressure up to 70 kbar and compared with that of Li16−2x Znx (GeO4)4(x = 1, 2). Both types showed pronounced resistivity maxima between 20–30 kbar and marked decrease thereafter. Measurements as a function of temperature between 120–300 K permitted the determination of activation energies and prefactors that also showed corresponding maxima. The activation volumes (ΔV) of the first type of compound varied between 4.34 to −4.90 cm3/mol at 300 K and decreased monotonically with increasing temperature. For the second type ΔV was much smaller, varied with pressure between 0.58 and −0.24 cm3/mol, and went through a maximum with increasing temperature. High-pressure studies were also conducted on aged samples, and the results are discussed in conjunction with results of impedance measurements and nuclear magnetic resonance (NMR) studies. The principal effect of pressure appears to be variations of the sum of interatomic potentials and hence barrier height, which also causes significant changes in entropy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated Li+/H+ exchange in the lithium ion conductors (LISICONS) [ Li2+2xZn1-xGeO4; x = 0.5 ( I) and x = 0.75 (II)] and their parent, gamma-Li2ZnGeO4. Facile exchange of approximately 2x lithium ions per formula unit occurs with both the LISICONS in dilute acetic acid, while the parent material does not exhibit an obvious Li+/H+ exchange under the same conditions. The results can be understood in terms of lithium ion distribution in the crystal structures: the parent Li2ZnGeO4, where all the lithium ions form part of the tetrahedral framework structure, does not exhibit a ready Li+/H+ exchange; LISICONS, where lithium ions are distributed between framework ( tetrahedral) and nonframework sites, undergo a facile Li+/H+ exchange of the nonframework site lithium ions. Accordingly, Li+/H+ exchange in dilute aqueous acetic acid provides a convenient probe to distinguish between the mobile and the immobile lithium ions in lithium ion conductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature dependent Brillouin scattering studies have been performed to ascertain the influence of solvent dynamics on ion-transport in succinonitrile-lithium salt plastic crystalline electrolytes. Though very rarely employed, we observe that Brillouin spectroscopy is an invaluable tool for investigation of solvent dynamics. Analysis of various acoustic (long wavelength) phonon modes observed in the Brillouin scattering spectra reveal the influence of trans-gauche isomerism and as well as ion-association effects on ion transport. Although pristine SN and dilute SN-LiClO(4) samples show only the bulk longitudinal-acoustic (LA) mode, concentrated SN-LiClO(4) (similar to 0.3-1 M) electrolytes display both the bulk LA mode as well as salt induced brillouin modes at ambient temperature. The appearance of more than one brillouin mode is attributed to the scattering of light from regions with different compressibilities (''compactness''). Correspondingly, these modes show a large decrease in the full width at half-maximum (abbreviated as nu(f)) as the temperature decreases. Anomalous temperature dependent behavior of nu(f) with addition of salt could be attributed to the presence of disorder or strong coupling with a neighbor. The shape of the spectrum was evaluated using a Lorentzian and Fano line shape function depending on the nature and behavior of the Brillouin modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cross-linked polymer ``gel'' electrolyte obtained from free radical polymerization of a vinyl monomer (acrylonitrile; AN) in a room temperature ionic liquid electrolyte (N,N-methyl butyl pyrrolidinium-bis (trifluoromethanesulphonyl)imide-lithium bis(trifluoromethanesulphonyl) imide;LiTFSI-[Py(1,4)-TFSI]) for application in high rate capability rechargeable lithium-ion batteries is discussed here. This is a novel alternative compared to the often employed approach of using a molecular liquid as the medium for performing the polymerization reaction. The polymer ``gel'' electrolytes (AN:Py(1,4)-TFSI = 0.16-0.18, w/w) showed remarkable compliable mechanical strength and higher thermal stability compared to LiTFSI-[Py(1,4)-TFSI]. Despite two orders increase in magnitude of viscosity of polymer ``gels'', the room temperature ionic conductivity of the ``gels'' (1.1 x 10(-3)-1.7 x 10(-3) Omega(-1) cm(-1)) were nearly identical to that of the ionic liquid (1.8 x 10(-3) Omega(-1) cm(-1)). The present ``gel'' electrolytes did not exhibit any ageing effects on ionic conductivity similar to the conventional polymer gel electrolytes (e.g. high molecular weight polymer + salt + high dielectric constant molecular solvent). The disorder (ionic liquid) to a relative order (cross-linked polymer electrolyte) transformation does not at all influence the concentration of conducting species. The polymer framework is still able to provide efficient pathways for fast ion transport. Unlike the ionic liquid which is impossible to assemble without a conventional separator in a cell, the polymer ``gel'' electrolyte could be conveniently assembled without a separator in a Li vertical bar lithium iron phosphate (LiFePO(4)) cell. Compared to the ionic liquid, the ``gel'' electrolyte showed exceptional cyclability and rate capability (current density: 35-760 mA g(-1) with LiFePO(4) electronically wired with carbon (amorphous or multiwalled nanotube [MWCNT]).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beginning with the ‘frog-leg experiment’ by Galvani (1786), followed by the demonstrations of Volta pile by Volta (1792) and lead-acid accumulator by Plante´ (1859), several battery chemistries have been developed and realized commercially. The development of lithium-ion rechargeable battery in the early 1990s is a breakthrough in the science and technology of batteries. Owing to its high energy density and high operating voltage, the Li-ion battery has become the battery of choice for various portable applications such as note-book computers, cellular telephones, camcorders, etc. Huge efforts are underway in succeeding the development of large size batteries for electric vehicle applications. The origin of lithium-ion battery lies in the discovery that Li+-ions can reversibly be intercalated into/de-intercalated from the Van der Walls gap between graphene sheets of carbon materials at a potential close to the Li/Li+ electrode. By employing carbon as the negative electrode material in rechargeable lithium-ion batteries, the problems associated with metallic lithium in rechargeable lithium batteries have been mitigated. Complimentary investigations on intercalation compounds based on transition metals have resulted in establishing LiCoO2 as the promising cathode material. By employing carbon and LiCoO2, respectively, as the negative and positive electrodes in a non-aqueous lithium-salt electrolyte,a Li-ion cell with a voltage value of about 3.5 V has resulted.Subsequent to commercialization of Li-ion batteries, a number of research activities concerning various aspects of the battery components began in several laboratories across the globe. Regarding the positive electrode materials, research priorities have been to develop different kinds of active materials concerning various aspects such as safety, high capacity, low cost, high stability with long cycle-life, environmental compatibility,understanding relationships between crystallographic and electrochemical properties. The present review discusses the published literature on different positive electrode materials of Li-ion batteries, with a focus on the effect of particle size on electrochemical performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report a synthesis, characterization and electrochemical properties of V2O5 nanobelts. V2O5 nanobelts have been prepared via hydrothermal treatment of commercial V2O5 in acidic (HCl/H2SO4) medium at relatively low temperature (160 degrees C). The hydrothermally derived products have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photo electron spectroscopy (XPS), UV-Vis spectroscopy, Scanning/Transmission electron microscopy (SEM/TEM). XRD pattern of V2O5 nanobelts show an orthorhombic phase. From the FTIR spectrum, the peak observed at 1018 cm-1 is characteristic of the stretching vibration mode of the terminal vanadyl, V = O. The UV-Vis absorption spectrum of V2O5 nanobelts show maximum absorbance at 430 nm, which was blue-shifted compared to that of bulk V2O5. TEM micrographs reveal that the products consist of nanobelts of 40-200 nm in thickness and several tens of micrometers in length. The electrochemical analysis shows an initial discharge capacity of 360 mAh g-1 and its almost stabilized capacity is reached to 250 mAh g-1 after 55 cycles. A probable reaction mechanism for the formation of orthorhombic V2O5 nanobelts is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here a multiple-nitrile based lithium-salt liquid electrolyte. The ionic conductivity of poly (propyl ether imine) (abbreviated as PETIM) lithium salt dendrimer liquid electrolyte was observed to be a function of dendrimer generation number, n=0 (monomer)-3. While the highest room temperature ionic conductivity value (similar to 10(-1) Sm-1) was recorded for the bis-2cyanoethyl ether monomer (i.e. zeroth generation; G(0)-CN), conductivity decreased progressively to lower values (similar to 10(-3) Sm-1) with increase in generation number (G(1)-CN -> G(3)-CN). The G(0)-CN and higher dendrimer generations showed high thermal stability (approximate to 150 to 200 degrees C), low moisture sensitivity and tunable viscosity (similar to 10(-2) (G(0)-CN) to 3 (G(3)-CN) Pa s). The linker ether group was found to be crucial for ion transport and also eliminated a large number of detrimental features, chiefly moisture sensitivity, chemical instability associated typically with prevalent molecular liquid solvents. Based on the combination of several beneficial physicochemical properties, we presently envisage that the PETIM dendrimers especially the G(0)-CN electrolytes hold promise as electrolytes in electrochemical devices such as lithium-ion batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrothermal reaction of a mixture of a colloidal dispersion of graphite oxide and ammonium vanadate yielded a hybrid made of graphene and a nanotubular metastable monoclinic polymorph of VO2, known as VO2(B). The formation of VO2(B) nanotubes is accompanied by the reduction of graphite oxide. Initially the partially scrolled graphite oxide layers act as templates for the crystallization of VO2(B) in the tubular morphology. This is followed by the reduction of graphite oxide to graphene resulting in a hybrid in which VO2(B) nanotubes are dispersed in graphene. Electron microscopic studies of the hybrid reveal that the VO2(B) nanotubes are wrapped by and trapped between graphene sheets. The hybrid shows potential to be a high capacity cathode material for lithium ion batteries. It exhibits a high capacity (similar to 450 mAh/g) and cycling stability. The high capacity of the hybrid is attributed to the interaction between the graphene sheets and the VO2(B) tubes which improves the charge-transfer. The graphene matrix prevents the aggregation of the VO2(B) nanotubes leading to high cycling stability. (C) 2012 Elsevier Ltd. All rights reserved.