186 resultados para gradient methods


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop and analyze C(0) penalty methods for the fully nonlinear Monge-Ampere equation det(D(2)u) = f in two dimensions. The key idea in designing our methods is to build discretizations such that the resulting discrete linearizations are symmetric, stable, and consistent with the continuous linearization. We are then able to show the well-posedness of the penalty method as well as quasi-optimal error estimates using the Banach fixed-point theorem as our main tool. Numerical experiments are presented which support the theoretical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper develops a family of explicit algorithms for rotational dynamics and presents their comparison with several existing methods. For rotational motion the configuration space is a non-linear manifold, not a Euclidean vector space. As a consequence the rotation vector and its time derivatives correspond to different tangent spaces of rotation manifold at different time instants. This renders the usual integration algorithms for Euclidean space inapplicable for rotation. In the present algorithms this problem is circumvented by relating the equation of motion to a particular tangent space. It has been accomplished with the help of already existing relation between rotation increments which belongs to two different tangent spaces. The suggested method could in principle make any integration algorithm on Euclidean space, applicable to rotation. However, the present paper is restricted only within explicit Runge-Kutta enabled to handle rotation. The algorithms developed here are explicit and hence computationally cheaper than implicit methods. Moreover, they appear to have much higher local accuracy and hence accurate in predicting any constants of motion for reasonably longer time. The numerical results for solutions as well as constants of motion, indicate superior performance by most of our algorithms, when compared to some of the currently known algorithms, namely ALGO-C1, STW, LIEMID[EA], MCG, SUBCYC-M.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the structural and pharmaceutical properties of different multicomponent crystalline forms of lamotrigine (LTG) with some pharmaceutically acceptable coformers viz. nicotinamide (1), acetamide (2), acetic acid (3), 4-hydroxy-benzoic acid (4) and saccharin (5). The structurally homogeneous phases were characterized in the solid state by DSC/TGA, FT-IR and XRD (powder and single crystal structure analysis) as well as in the solution phase. Forms 1 and 2 were found to be cocrystal hydrate and cocrystal, respectively, while in forms 3, 4 and 5, proton transfer was observed from coformer to drug. The enthalpy of formation of multicomponent crystals from their components was determined from the enthalpy of solution of the cocrystals and the components separately. Higher exothermic values of the enthalpy of formation for molecular complexes 3, 4 and 5 suggest these to be more stable than 1 and 2. The solubility was measured in water as well as in phosphate buffers of varying pH. The salt solvate 3 exhibited the highest solubility of the drug in water as well as in buffers over the pH range 7-3 while the cocrystal hydrate 1 showed the maximum solubility in a buffer of pH 2. A significant lowering of the dosage profile of LTG was observed for 1, 3 and 5 in the animal activity studies on mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many downscaling techniques have been developed in the past few years for projection of station-scale hydrological variables from large-scale atmospheric variables simulated by general circulation models (GCMs) to assess the hydrological impacts of climate change. This article compares the performances of three downscaling methods, viz. conditional random field (CRF), K-nearest neighbour (KNN) and support vector machine (SVM) methods in downscaling precipitation in the Punjab region of India, belonging to the monsoon regime. The CRF model is a recently developed method for downscaling hydrological variables in a probabilistic framework, while the SVM model is a popular machine learning tool useful in terms of its ability to generalize and capture nonlinear relationships between predictors and predictand. The KNN model is an analogue-type method that queries days similar to a given feature vector from the training data and classifies future days by random sampling from a weighted set of K closest training examples. The models are applied for downscaling monsoon (June to September) daily precipitation at six locations in Punjab. Model performances with respect to reproduction of various statistics such as dry and wet spell length distributions, daily rainfall distribution, and intersite correlations are examined. It is found that the CRF and KNN models perform slightly better than the SVM model in reproducing most daily rainfall statistics. These models are then used to project future precipitation at the six locations. Output from the Canadian global climate model (CGCM3) GCM for three scenarios, viz. A1B, A2, and B1 is used for projection of future precipitation. The projections show a change in probability density functions of daily rainfall amount and changes in the wet and dry spell distributions of daily precipitation. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes three novel techniques to automatically evaluate sentence extract summaries. Two of these techniques called FuSE and DeFuSE evaluate the quality of the generated extract summary based on the degree of similarity to the model summary. They use a fuzzy set theoretic basis to generate a match score. DeFuSE is an enhancement to FuSE and uses WordNet based hypernymy structures to detect similarity between sentences at abstracted levels. The third technique focuses on quantifying the quality of an extract summary based on the difficulty in generating such a summary. Advantages of these techniques are described with examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topology optimization methods have been shown to have extensive application in the design of microsystems. However, their utility in practical situations is restricted to predominantly planar configurations due to the limitations of most microfabrication techniques in realizing structures with arbitrary topologies in the direction perpendicular to the substrate. This study addresses the problem of synthesizing optimal topologies in the out-of-plane direction while obeying the constraints imposed by surface micromachining. A new formulation that achieves this by defining a design space that implicitly obeys the manufacturing constraints with a continuous design parameterization is presented in this paper. This is in contrast to including manufacturing cost in the objective function or constraints. The resulting solutions of the new formulation obtained with gradient-based optimization directly provide the photolithographic mask layouts. Two examples that illustrate the approach for the case of stiff structures are included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a class of symmetric discontinuous Galerkin methods on graded meshes. Optimal order error estimates are derived in both the energy norm and the L 2 norm, and we establish the uniform convergence of V-cycle, F-cycle and W-cycle multigrid algorithms for the resulting discrete problems. Numerical results that confirm the theoretical results are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixed ionic and electronic conduction in Zr02-based solid electrolytes was studied.The effect of impurities and second-phase particles on the mixed conduction parameter, P,, was measured for different types of ZrOZ electrolytes. The performance of solid-state sensors incorporating ZrOZ electrolytes is sometimes limited by electronic conduction in ZrOZ, especially at temperatures >I800 K. Methods for eliminating or minimizing errors in measured emf due to electronically driven transport of oxygen anions are discussed. Examples include probes for monitoring oxygen content in liquid steel as well as the newly developed sulfur sensor based on a ZrOz(Ca0) + CaS electrolyte. The use of mixed conducting ZrOZ as a semipermeable membrane or chemically selective sieve for oxygen at high temperatures is discussed. Oxygen transport from liquid iron to CO + C& gas mixtures through a ZrOZ membrane driven by a chemical potential gradient, in the absence of electrical leads or imposed potentials, was experimentally observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New compos~tiong radient solid electrolytes are developed which have application in high temperature solid state galvanic sensors and provide a new tool for thermodynamic measurements. The electrolyte consists oi a solid solution between two ionic conductors with a common mobile ion and spatial variation in composition of otber coxup nents. Incorporation of the composite electrolyte in sensors permits the use oi dissimilar gas electrodes. It is demonsuated, both experimentall y and theoretically, that the composition gradient of the relativeiy immobile species does not give rise to a diffusion potential.The emi of a cell is determined by the activity of the mobile species at the two eiectrodes. The thermodynamic properties of solid solutions can be measured using the gradient solid electrolyte. The experimental stuay is based on model systems A?(COj)x(S04)l-x (A=Na,K),where S \.aria across the electrolyte. The functionally gradient solid electrolytes used for activity measurements consist of pure carbonate at one ena and the solid solution under stuav at the other. The identical vaiues of activity, obtained h m t hree different modes of operation of the ceil. indicate unit transport number for the ddi metal ion in the graciient electrolyte. Tlle activities in the solid solutions exhibit moderate positive deviations from Raoult 's law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NMR spectroscopy has witnessed tremendous advancements in recent years with the development of new methodologies for structure determination and availability of high-field strength spectrometers equipped with cryogenic probes. Supported by these advancements, a new dimension in NMR research has emerged which aims to increase the speed with data is collected and analyzed. Several novel methodologies have been proposed in this direction. This review focuses on the principles on which these different approaches are based with an emphasis on G-matrix Fourier transform NMR spectroscopy.