128 resultados para fuzzy sample entropy
Resumo:
We compute the renormalized entanglement entropy (REE) for BPS black solutions in N = 2, four-dimensional gauged supergravity. We find that this quantity decreases monotonically with the size of the entangling region until it reaches a critical point, then increases and approaches the entropy density of the brane. This behavior can be understood as a consequence of the renormalized entanglement entropy being driven by two competing factors, namely, entanglement and the mixedness of the black brane. In the UV, entanglement dominates, whereas in the IR, the mixedness takes over.
Resumo:
Multi temporal land use information were derived using two decades remote sensing data and simulated for 2012 and 2020 with Cellular Automata (CA) considering scenarios, change probabilities (through Markov chain) and Multi Criteria Evaluation (MCE). Agents and constraints were considered for modeling the urbanization process. Agents were nornmlized through fiizzyfication and priority weights were assigned through Analytical Hierarchical Process (AHP) pairwise comparison for each factor (in MCE) to derive behavior-oriented rules of transition for each land use class. Simulation shows a good agreement with the classified data. Fuzzy and AHP helped in analyzing the effects of agents of growth clearly and CA-Markov proved as a powerful tool in modelling and helped in capturing and visualizing the spatiotemporal patterns of urbanization. This provided rapid land evaluation framework with the essential insights of the urban trajectory for effective sustainable city planning.
Resumo:
Regional frequency analysis is widely used for estimating quantiles of hydrological extreme events at sparsely gauged/ungauged target sites in river basins. It involves identification of a region (group of watersheds) resembling watershed of the target site, and use of information pooled from the region to estimate quantile for the target site. In the analysis, watershed of the target site is assumed to completely resemble watersheds in the identified region in terms of mechanism underlying generation of extreme event. In reality, it is rare to find watersheds that completely resemble each other. Fuzzy clustering approach can account for partial resemblance of watersheds and yield region(s) for the target site. Formation of regions and quantile estimation requires discerning information from fuzzy-membership matrix obtained based on the approach. Practitioners often defuzzify the matrix to form disjoint clusters (regions) and use them as the basis for quantile estimation. The defuzzification approach (DFA) results in loss of information discerned on partial resemblance of watersheds. The lost information cannot be utilized in quantile estimation, owing to which the estimates could have significant error. To avert the loss of information, a threshold strategy (TS) was considered in some prior studies. In this study, it is analytically shown that the strategy results in under-prediction of quantiles. To address this, a mathematical approach is proposed in this study and its effectiveness in estimating flood quantiles relative to DFA and TS is demonstrated through Monte-Carlo simulation experiments and case study on Mid-Atlantic water resources region, USA. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We quantize the space of 2-charge fuzzballs in IIB supergravity on K3. The resulting entropy precisely matches the D1-D5 black hole entropy, including a specific numerical coefficient. A partial match (ie., a smaller coefficient) was found by Rychkov a decade ago using the Lunin-Mathur subclass of solutions - we use a simple observation to generalize his approach to the full moduli space of K3 fuzzballs, filling a small gap in the literature.
Resumo:
We study the free fermion theory in 1+1 dimensions deformed by chemical potentials for holomorphic, conserved currents at finite temperature and on a spatial circle. For a spin-three chemical potential mu, the deformation is related at high temperatures to a higher spin black hole in hs0] theory on AdS(3) spacetime. We calculate the order mu(2) corrections to the single interval Renyi and entanglement entropies on the torus using the bosonized formulation. A consistent result, satisfying all checks, emerges upon carefully accounting for both perturbative and winding mode contributions in the bosonized language. The order mu(2) corrections involve integrals that are finite but potentially sensitive to contact term singularities. We propose and apply a prescription for defining such integrals which matches the Hamiltonian picture and passes several non-trivial checks for both thermal corrections and the Renyi entropies at this order. The thermal corrections are given by a weight six quasi-modular form, whilst the Renyi entropies are controlled by quasi-elliptic functions of the interval length with modular weight six. We also point out the well known connection between the perturbative expansion of the partition function in powers of the spin-three chemical potential and the Gross-Taylor genus expansion of large-N Yang-Mills theory on the torus. We note the absence of winding mode contributions in this connection, which suggests qualitatively different entanglement entropies for the two systems.
Resumo:
We propose to develop a 3-D optical flow features based human action recognition system. Optical flow based features are employed here since they can capture the apparent movement in object, by design. Moreover, they can represent information hierarchically from local pixel level to global object level. In this work, 3-D optical flow based features a re extracted by combining the 2-1) optical flow based features with the depth flow features obtained from depth camera. In order to develop an action recognition system, we employ a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). The m of McFIS is to find the decision boundary separating different classes based on their respective optical flow based features. McFIS consists of a neuro-fuzzy inference system (cognitive component) and a self-regulatory learning mechanism (meta-cognitive component). During the supervised learning, self-regulatory learning mechanism monitors the knowledge of the current sample with respect to the existing knowledge in the network and controls the learning by deciding on sample deletion, sample learning or sample reserve strategies. The performance of the proposed action recognition system was evaluated on a proprietary data set consisting of eight subjects. The performance evaluation with standard support vector machine classifier and extreme learning machine indicates improved performance of McFIS is recognizing actions based of 3-D optical flow based features.
Resumo:
An energy approach within the framework of thermodynamics is used to model the fatigue process in plain concrete. Fatigue crack growth is an irreversible process associated with an irreversible entropy gain. A closed-form expression for entropy generated during fatigue in terms of energy dissipated is derived using principles of dimensional analysis and self-similarity. An increase in compliance is considered as a measure of damage accumulated during fatigue. The entropy at final fatigue failure is shown to be independent of loading and geometry and is proposed as a material property. A relationship between energy dissipated and number of cycles of fatigue loading is obtained. (C) 2015 American Society of Civil Engineers.
Resumo:
Minimization problems with respect to a one-parameter family of generalized relative entropies are studied. These relative entropies, which we term relative alpha-entropies (denoted I-alpha), arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative alpha-entropies behave like squared Euclidean distance and satisfy the Pythagorean property. Minimizers of these relative alpha-entropies on closed and convex sets are shown to exist. Such minimizations generalize the maximum Renyi or Tsallis entropy principle. The minimizing probability distribution (termed forward I-alpha-projection) for a linear family is shown to obey a power-law. Other results in connection with statistical inference, namely subspace transitivity and iterated projections, are also established. In a companion paper, a related minimization problem of interest in robust statistics that leads to a reverse I-alpha-projection is studied.
Resumo:
In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted I-alpha) were studied. Such minimizers were called forward I-alpha-projections. Here, a complementary class of minimization problems leading to the so-called reverse I-alpha-projections are studied. Reverse I-alpha-projections, particularly on log-convex or power-law families, are of interest in robust estimation problems (alpha > 1) and in constrained compression settings (alpha < 1). Orthogonality of the power-law family with an associated linear family is first established and is then exploited to turn a reverse I-alpha-projection into a forward I-alpha-projection. The transformed problem is a simpler quasi-convex minimization subject to linear constraints.
Resumo:
Groundwater management involves conflicting objectives as maximization of discharge contradicts the criteria of minimum pumping cost and minimum piping cost. In addition, available data contains uncertainties such as market fluctuations, variations in water levels of wells and variations of ground water policies. A fuzzy model is to be evolved to tackle the uncertainties, and a multiobjective optimization is to be conducted to simultaneously satisfy the contradicting objectives. Towards this end, a multiobjective fuzzy optimization model is evolved. To get at the upper and lower bounds of the individual objectives, particle Swarm optimization (PSO) is adopted. The analytic element method (AEM) is employed to obtain the operating potentio metric head. In this study, a multiobjective fuzzy optimization model considering three conflicting objectives is developed using PSO and AEM methods for obtaining a sustainable groundwater management policy. The developed model is applied to a case study, and it is demonstrated that the compromise solution satisfies all the objectives with adequate levels of satisfaction. Sensitivity analysis is carried out by varying the parameters, and it is shown that the effect of any such variation is quite significant. Copyright (c) 2015 John Wiley & Sons, Ltd.
Resumo:
Glycated hemoglobin (HbA(1c)) is a `gold standard' biomarker for assessing the glycemic index of an individual. HbA(1c) is formed due to nonenzymatic glycosylation at N-terminal valine residue of the P-globin chain. Cation exchange based high performance liquid chromatography (CE HPLC) is mostly used to quantify HbA(1c), in blood sample. A few genetic variants of hemoglobin and post-translationally modified variants of hemoglobin interfere with CE HPLC-based quantification,. resulting in its false positive estimation. Using mass spectrometry, we analyzed a blood sample with abnormally high HbA(1c) (52.1%) in the CE HPLC method. The observed HbA(1c) did not corroborate the blood glucose level of the patient. A mass spectrometry based bottom up proteomics approach, intact globin chain mass analysis, and chemical modification of the proteolytic peptides identified the presence of Hb Beckman, a genetic variant of hemoglobin, in the experimental sample. A similar surface area to charge ratio between HbA(1c) and Hb Beckman might have resulted in the coelution of the variant with HbA(1c) in CE HPLC. Therefore, in the screening of diabetes mellitus through the estimation of HbA(1c), it is important to look for genetic variants of hemoglobin in samples that show abnormally high glycemic index, and HbA(1c) must be estimated using an alternative method. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
This paper presents the development and application of a stochastic dynamic programming model with fuzzy state variables for irrigation of multiple crops. A fuzzy stochastic dynamic programming (FSDP) model is developed in which the reservoir storage and soil moisture of the crops are considered as fuzzy numbers, and the reservoir inflow is considered as a stochastic variable. The model is formulated with an objective of minimizing crop yield deficits, resulting in optimal water allocations to the crops by maintaining storage continuity and soil moisture balance. The standard fuzzy arithmetic method is used to solve all arithmetic equations with fuzzy numbers, and the fuzzy ranking method is used to compare two or more fuzzy numbers. The reservoir operation model is integrated with a daily-based water allocation model, which results in daily temporal variations of allocated water, soil moisture, and crop deficits. A case study of an existing Bhadra reservoir in Karnataka, India, is chosen for the model application. The FSDP is a more realistic model because it considers the uncertainty in discretization of state variables. The results obtained using the FSDP model are found to be more acceptable for the case study than those of the classical stochastic dynamic model and the standard operating model, in terms of 10-day releases from the reservoir and evapotranspiration deficit. (C) 2015 American Society of Civil Engineers.
Resumo:
This work provides a methodology for synthesizing isolated multi-component, high entropy alloy nanoparticles. Wet chemical synthesis technique was used to synthesis NiFeCrCuCo nanoparticles. As synthesized nanoparticles were spherical with an average size of 26.7 +/- 3.3 nm. Average composition of the as-synthesized nanoparticle dispersion was 26 +/- 2 at% Cr, 14 +/- 2 at% Fe, 10 +/- 0.6 at% Co, 25 +/- 0.1 at% Ni and 25 +/- 1.1 at% Cu. Compositional analysis of the nanoparticles conducted using the compositional line profile analysis and compositional mapping on a single nanoparticle level revealed a fairly uniform distribution of all the five component elements within the nanoparticle volume. Electron diffraction analysis clearly revealed that the structure of as-synthesized nanoparticles was face centered cubic. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this study, a new reactive power loss index (RPLI) is proposed for identification of weak buses in the system. This index is further used for determining the optimal locations for placement of reactive compensation devices in the power system for additional voltage support. The new index is computed from the reactive power support and loss allocation algorithm using Y-bus method for the system under intact condition and as well as critical/severe network contingencies cases. Fuzzy logic approach is used to select the important and critical/severe line contingencies from the contingency list. The inherent characteristics of the reactive power in system operation is properly addressed while determining the reactive power loss allocation to load buses. The proposed index is tested on sample 10-bus equivalent system and 72-bus practical equivalent system of Indian southern region power grid. The validation of the weak buses identification from the proposed index with that from other existing methods in the literature is carried out to demonstrate the effectiveness of the proposed index. Simulation results show that the identification of weak buses in the system from the new RPLI is completely non-iterative, thus requires minimal computational efforts as compared with other existing methods in the literature.