177 resultados para fundamental parameters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are, in general, estimated by fitting the theoretical models to a field monitoring or laboratory experimental data. Double-reservoir diffusion (Transient Through-Diffusion) experiments are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. These design parameters are estimated by manual parameter adjusting techniques (also called eye-fitting) like Pollute. In this work an automated inverse model is developed to estimate the mass transport parameters from transient through-diffusion experimental data. The proposed inverse model uses particle swarm optimization (PSO) algorithm which is based on the social behaviour of animals for finding their food sources. Finite difference numerical solution of the transient through-diffusion mathematical model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation.The working principle of the new solver is demonstrated by estimating mass transport parameters from the published transient through-diffusion experimental data. The estimated values are compared with the values obtained by existing procedure. The present technique is robust and efficient. The mass transport parameters are obtained with a very good precision in less time

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric perturbations due to the annular solar eclipse were monitored to understand its influence on the meteorological parameters from surface to the lower stratosphere. A strong inversion at 13 km and an abnormal warming in the upper troposphere were noticed on the eclipse day. A decrease in tropopause height associated with increase in temperature caused anomalous warming. Considerable attenuation of incoming solar radiation resulted in abrupt increase of air temperature during the next 24 h followed by sharp decrease in relative humidity. The time lag is attributed to the distance from the totality and the response time between tropopause and surface layer. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social, economic and political development of a region is dependent on the health and quantity of the natural resources. Integrated approaches in the management of natural resources would ensure sustainability, which demands inventorying, mapping and monitoring of resources considering all components of an ecosystem. The monitoring of hydrological and catchment landscape of river resources have a vital role in the conservation and management of aquatic resources. This paper presents a case study Venkatapura river basin in Uttara Kannada district of Karnataka State, India based on stream hydrology and landuse analyses. The results revealed variations in dissolved oxygen and free carbon dioxide according to the flow nature of the water, and increased amount of phosphates and coliform contamination in streams closer to anthropogenic activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fixed and mobile relays are used, among other applications, in the downlink of cellular communications systems. Cooperation between relays can greatly increase their benefits in terms of extended coverage, increased reliability, and improved spectral efficiency. In this paper, we introduce the fundamental notion of asymmetric cooperation. For this, we consider a two-phase transmission protocol where, in the first phase, the base station (BS) sends several available messages to the relays over wireless links. But, depending on the channel state and the duration of the BS transmission, not all relays decode all messages. In a second phase, the relays, which may now have asymmetric message knowledge, use cooperative linear precoding for the transmission to the mobile stations. We show that for many channel configurations, asymmetric cooperation, although (slighlty) sub-optimum for the second phase, is optimum from a total-throughput point of view, as it requires less time and energy in the first phase. We give analytical formulations for the optimum operating parameters and the achievable throughput, and show that under typical circumstances, 20-30% throughput enhancement can be achieved over conventional systems.