208 resultados para fuel oil additive lanthanide transition metal oxide complex diesel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the mechanism of action of transition metal chromites on the decomposition of ammonium perchlorate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antipyrine is a well known ligand for lanthanides (I). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrine is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions. Keeping these points in view we have reported earlier, complexes of lanthanides with a bidentate ligand N,N-diethyl-antipyrine-4-carboxamide (2). In this communication we report the synthesis of two new ligands from Schiff base condensation of antipyraldehyde and the hydrazides of acetic and benzoic acids and the complexes formed by these hydrazones with lanthanide perchlorates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ternary metal-nucleotide complex, Na2[Cu(5’-IMP)2(im)o,8(H20)l,2(H20)2h]as~ 1be2e.n4 pHr2ep0a,r ed and its structure analyzed by X-ray diffraction (5’-IMP = inosine 5’-monophos hate; im = imidazole). The complex crystallizes in space group C222, with a = 8.733 (4) A, b = 23.213 (5) A, c = 21.489 (6) 1, and Z = 4. The structure was solved by the heavy-atom method and refined by full-matrix least-squares technique on the basis of 2008 observed reflections to a final R value of 0.087. Symmetry-related 5’-IMP anions coordinate in cis geometry through the N(7) atoms of the bases. The other cis positions of the coordination plane are statistically occupied by nitrogen atoms of disordered im groups and water oxygens with occupancies 0.4 and 0.6, respectively. Water oxygens in axial positions complete the octahedral coordination of Cu(I1). The complex is isostructural with C~S-[P~(S’-IMP),(NH~)~a] m”,o del proposed for Pt(I1) binding to DNA. The base binding observed in the present case is different from the typical ”phosphate only” binding shown from earlier studies on metal-nucleotide complexes containing various other ?r-aromatic amines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antipyrlne is a well known llgand for lanthanldes (i). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrlne is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theory of the insulator-metal transition in transition-metal compounds is developed in terms of the collapse of the effective energy gap which is a function of the thermally excited electron-hole pairs. This dependence is shown to arise from the hole-lattice interaction. The reaction of the lattice is found to be equivalent to generating an internal positive pressure (strain). Estimates show that the observed typical behaviour of the conductivity jump and the change of volume at the transition temperature can be explained by the present theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a method for the deposition of thin films and thick coatings of metal oxides through the liquid medium, involving the micro waveirradiation of a solution of a metal-organic complex in a suitable dielectric solvent. The process is a combination of sol-gel and dip-coating methods, wherein coatings can be obtained on nonconducting and semiconducting substrates, within a few minutes. Thin films of nanostructured ZnO (wurtzite) have been obtained on Si(100), glass and polymer substrates, the nanostructure determined by process parameters The coatings are strongly adherent and uniform over 15 mm x 15 mm, the growth rate similar to 0.25 mu m/min Coatings of nanocrystalline Fe2O3 and Ga2O3 have also been obtained The method is scalable to larger substrates, and is promising as a low temperature technique for coating dielectric substrates, including flexible polymers. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalytic activities of some transition metal-phthalocyanine complexes towards electroreduction of molecular oxygen are examined on Nafion®-bound and bare porous carbon electrodes in 2.5 M H2SO4 electrolyte. It is found that these metal complexes exhibit better catalytic activities towards oxygen reduction with the Nafion®-bound electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New chiral diphosphazane ligands of the type Ph(2)PN(S-*CHMePh)PYY' {YY'= Ph(2) (2), O2C6H4 (3); Y= Ph, Y'= Cl {4a (SS), 4b (SR)}, N(2)C(3)HMe(2)-3,5 {5a (SR), 5b (SS)} are synthesised starting from a chiral aminophosphine, Ph(2)PNH(S-*CHMePh) (1). The structure of one of the diastereomer 5a has been confirmed by single crystal X-ray diffraction {Orthorhombic system, P2(1)2(1)2(1); a=10.456 (4), b=15.362 (7), c=17.379 (6) Angstrom, Z=4}. Transition metal mononuclear complexes [Rh{eta(2)-(Ph(2)P)(2)N- (S-*CHMePh)}(2)](+)(BF4)(-) (6), [PdCl2{eta(2)-(Ph(2)P)(2)N(S-*CHMePh)}] (7) and [PtCl2{eta(2)-(Ph(2)P)(2)N- (S-*CHMePh)}] (8) have also been synthesised. The structure of the palladium complex 7 is solved by X-ray crystallography {Orthorhombic system, P2(1)2(1)2(1); a=8.746 (2), b=18.086 (2), c=20.811 (3) Angstrom, Z=4}. All these compounds are characterised by micro analyses, IR and NMR spectroscopic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wide range of condensed matter systems traverse the metal-nonmetal transition. These include doped semiconductors, metal-ammonia solutions, metal clusters, metal alloys, transition metal oxides, and superconducting cuprates. Certain simple criteria, such as those due to Herzfeld and Mott, have been highly successful in explaining the metallicity of materials. In this article, we demonstrate the amazing effectiveness of these criteria and examine them in the light of recent experimental findings. We then discuss the Limitations in our understanding of the phenomenon of the metal-nonmetal transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hollow nanotubes of SiO2, Al2O3, V2O5, and MoO3 have been prepared using carbon nanotubes as templates. The procedure involves coating the carbon nanotubes with tetraethylorthosilicate, aluminum isopropoxide, or vanadium pentoxide gel, followed by calcination and heating at higher temperatures in air to oxidize the carbon. SiO2 nanotubes containing transition metal ions have been prepared by this procedure since such materials may be of use in catalysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical deposition of Ni-Pd alloy films of various compositions from bath solution containing ethylenediamine (EDA) was carried out to use as anode material for methanol oxidative fuel cell in H2SO4 medium. Electronic absorption spectrum of bath solution containing Ni2+ Pd2+ ions and EDA indicated the formation of a four coordinate square planar metal-ligand complex of both the metal ions. X-ray diffraction (XRD) patterns of the deposited alloy films show an increase in Pd-Ni alloy lattice parameter with increase in Pd content, and indicate the substitution of Pd in the lattice. A nano/ultrafine kind of crystal growth was observed in the alloy film deposited at low current density (2.5 mA cm(-2)). X-ray photoelectron spectroscopic (XPS) studies on the successively sputtered films showed the presence of Ni and Pd in pure metallic states and the surface concentration ratio of Ni to Pd is less than bulk indicating the segregation of Pd on the surface. Electro-catalytic oxidation of methanol in H2SO4 medium is found to be promoted on Ni-Pd electrodeposits. The anodic peak current characteristics to oxidation reaction on Ni-Pd was found typically high when compared to pure nickel and the relative increase in surface area by alloying the Ni by Pd was found to be as much as 300 times. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Divalent metal complexes of general formula M(2-nb)(2)(mc)(2)].2(2-nbH), where M = Co(II), Ni(II), Cu(II) or Zn(II), 2-nbH = 2-nitrobenzoic acid and mc = methyl carbazate (NH2NHCOOCH3), have been prepared and characterized by physicochemical and spectroscopic methods. Single-crystal X-ray study of the Cu(II) complex revealed that the molecule is centrosymmetric, with two N,O-chelating mc ligands in equatorial positions and a pair of monodentate 2-nb anions in the axial positions. The lattice 2-nbH molecules help to establish the packing of monomers through hydrogen-bonding interactions. Thermal stability and reactivity of the complexes were studied by TG-DTA. Emission studies show that these complexes are fluorescent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high efficiency of fuel-cell-powered electric vehicles makes them a potentially viable option for future transportation. Polymer Electrolyte Fuel Cells (PEFCs) are most promising among various fuel cells for electric traction due to their quick start-up and low-temperature operation. In recent years, the performance of PEFCs has reached the acceptable level both for automotive and stationary applications and efforts are now being expended in increasing their durability, which remains a major concern in their commercialization. To make PEFCs meet automotive targets an understanding of the factors affecting the stability of carbon support and platinum catalyst is critical. Alloying platinum (Pt) with first-row transition metals such as cobalt (Co) is reported to facilitate both higher degree of crystallinity and enhanced activity in relation to pristine Pt. But a major challenge for the application of Pt-transition metal alloys in PEFCs is to improve the stability of these binary catalysts. Dissolution of the non-precious metal in the acidic environment could alleviate the activity of the catalysts and hence cell performance. The use of graphitic carbon as cathode-catalyst support enhances the long-term stability of Pt and its alloys in relation to non-graphitic carbon as the former exhibits higher resistance to carbon corrosion in relation to the latter in PEFC cathodes during accelerated-stress test (AST). Changes in electrochemical surface area (ESA), cell performance and charge-transfer resistance are monitored during AST through cyclic voltammetry, cell polarization and impedance measurements, respectively. Studies on catalytic electrodes with X-ray diffraction, Raman spectroscopy and transmission electron microscopy reflect that graphitic carbon-support resists carbon corrosion and helps mitigating aggregation of Pt and Pt3Co catalyst particles. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.051301jes] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineering at the molecular level is one of the most exciting new developments for the generation of functional materials. However, the concept of designing polynuclear extended structures from bottom up is still not mature. Although progress has been made with secondary building units (SBUs) in metal organic frameworks (MOFs), the control seems to be just an illusion when it comes to bridging ligands such as the azide ion. When we say that the azido ligand is versatile in its bridging capabilities, what we mean is that it would be difficult to predict or control its bridging properties. However, this kind of serendipity is not always bad news. For example, scientists have shown that the azido ligand can mediate magnetic exchanges between paramagnetic metals in a predictable fashion (usually depending upon the bonding geometries). Therefore, it is a well-respected ligand in polynuclear assemblies. Serendipitous assemblies offer new magnetic structures that we may not otherwise even think about synthesizing. The azido ligand forms a variety of complexes with copper(II) using different blocking amines or pyridine based ligands. Its structural nature changes upon changing the substitution on amine, as well as the amount of blocking ligand. In principle, if we take any of these complexes and provide more coordination sites to the bridging azido ligands by removing a fraction of the blocking ligands, we can get new complexes with intricate structural networks and therefore different magnetic properties with the same components as used for the parent complex. In this Account, we mainly discuss the development of a number of new topological and magnetic exchange systems synthesized using this concept. Not all of these new complexes can be grouped according to their basic building structures or even by the ratio of the metal to blocking ligand. Therefore, we divided the discussion by the nuclearity of the basic building structures. Some of the complexes with the same nuclearities have very similar or even almost identical basic structures. However, the way these building units are joined together (by the azido bridges) to form the overall extended structures differ almost in every case. The complexes having the Cu-6 core are particularly interesting from a structural point of view. Although they have almost identical basic structures, some of them are extended in three dimensions, but two of them are extended in two dimensions by two different bridging networks. In the complexes having linear Cu-4 basic units, we find that using similar ligands does not always give the same bridging networks even within the basic building structures. These complexes have also enriched the field of molecular magnetism. One of the complexes with a Cu-3 building unit has provided us with the opportunity to study the competing behavior of two different kinds of magnetic exchange mechanism (ferromagnetic and antiferromagnetic) acting simultaneously between two metal ions. Through density functional theory calculations, we showed how they work independently and their additive nature to produce the overall effect. The exciting methodology for the generation of copper(II) polyclusters presented in this Account will provide the opportunity to explore analogous serendipitous assembly of diverse structures with interesting magnetic behavior using other transition metal ions having more than one unpaired electrons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria have a central role in the intrinsic pathway of apoptosis and involve activation of several transmembrane channels leading to release of death factors. Reduced expression of a mitochondrial J-protein DnaJC15 was associated with the development of chemoresistance in ovarian cancer cells. DnaJC15 was found to be a part of mitochondrial protein-transport machinery, though its connection with cell death mechanisms is still unclear. In the present study, we have provided evidence towards a novel function of DnaJC15 in regulation of mitochondrial permeability transition pore (MPTP) complex in normal and cancer cells. Overexpression of DnaJC15 resulted in MPTP opening and induction of apoptosis, whereas reduced amount of protein suppressed MPTP activation, upon cisplatin treatment. DnaJC15 was found to exert its proapoptotic function through the essential component of MPTP, cyclophilin D (CypD). Our results reveal a specific role of DnaJC15 in recruitment and coupling of CypD with mitochondrial permeability transition. In summary, our analysis provides first-time insights on the functional connection between mitochondrial inner membrane protein translocation machinery-associated J-protein DnaJC15 and regulation of cell death pathways.