152 resultados para frequency dependent parameters
Resumo:
Temperature- and density-dependent vibrational relaxation data for the v6 asymmetric stretch of W(CO)6 in supercritical fluoroform (trifluoromethane, CHF3) are presented and compared to a recent theory of solute vibrational relaxation. The theory, which uses thermodynamic and hydrodynamic conditions of the solvent as input parameters, shows very good agreement in reproducing the temperature- and density-dependent trends of the experimental data with a minimum of adjustable parameters. Once a small number of parameters are fixed by fitting the functional form of the density dependence, there are no adjustable parameters in the calculations of the temperature dependence. © 2001 American Institute of Physics.
Resumo:
We study a system of ordinary differential equations linked by parameters and subject to boundary conditions depending on parameters. We assume certain definiteness conditions on the coefficient functions and on the boundary conditions that yield, in the corresponding abstract setting, a right-definite case. We give results on location of the eigenvalues and oscillation of the eigenfunctions.
Resumo:
This paper describes a dynamic voltage frequency control scheme for a 256 X 64 SRAM block for reducing the energy in active mode and stand-by mode. The DVFM control system monitors the external clock and changes the supply voltage and the body bias so as to achieve a significant reduction in energy. The behavioral model of the proposed DVFM control system algorithm is described and simulated in HDL using delay and energy parameters obtained through SPICE simulation. The frequency range dictated by an external controller is 100 MHz to I GHz. The supply voltage of the complete memory system is varied in steps of 50 mV over the range of 500 mV to IV. The threshold voltage range of operation is plusmn100 mV around the nominal value, achieving 83.4% energy reduction in the active mode and 86.7% in the stand-by mode. This paper also proposes a energy replica that is used in the energy monitor subsystem of the DVFM system.
Resumo:
Estimation of creep and shrinkage are critical in order to compute loss of prestress with time in order to compute leak tightness and assess safety margins available in containment structures of nuclear power plants. Short-term creep and shrinkage experiments have been conducted using in-house test facilities developed specifically for the present research program on 35 and 45 MPa normal concrete and 25 MPa heavy density concrete. The extensive experimental program for creep, has cylinders subject to sustained levels of load typically for several days duration (till negligible strain increase with time is observed in the creep specimen), to provide the total creep strain versus time curves for the two normal density concrete grades and one heavy density concrete grade at different load levels, different ages at loading, and at different relative humidity’s. Shrinkage studies on prism specimen for concrete of the same mix grades are also being studied. In the first instance, creep and shrinkage prediction models reported in the literature has been used to predict the creep and shrinkage levels in subsequent experimental data with acceptable accuracy. While macro-scale short experiments and analytical model development to estimate time dependent deformation under sustained loads over long term, accounting for the composite rheology through the influence of parameters such as the characteristic strength, age of concrete at loading, relative humidity, temperature, mix proportion (cement: fine aggregate: coarse aggregate: water) and volume to surface ratio and the associated uncertainties in these variables form one part of the study, it is widely believed that strength, early age rheology, creep and shrinkage are affected by the material properties at the nano-scale that are not well established. In order to understand and improve cement and concrete properties, investigation of the nanostructure of the composite and how it relates to the local mechanical properties is being undertaken. While results of creep and shrinkage obtained at macro-scale and their predictions through rheological modeling are satisfactory, the nano and micro indenting experimental and analytical studies are presently underway. Computational mechanics based models for creep and shrinkage in concrete must necessarily account for numerous parameters that impact their short and long term response. A Kelvin type model with several elements representing the influence of various factors that impact the behaviour is under development. The immediate short term deformation (elastic response), effects of relative humidity and temperature, volume to surface ratio, water cement ratio and aggregate cement ratio, load levels and age of concrete at loading are parameters accounted for in this model. Inputs to this model, such as the pore structure and mechanical properties at micro/nano scale have been taken from scanning electron microscopy and micro/nano-indenting of the sample specimen.
Resumo:
The primary objective of the paper is to make use of statistical digital human model to better understand the nature of reach probability of points in the taskspace. The concept of task-dependent boundary manikin is introduced to geometrically characterize the extreme individuals in the given population who would accomplish the task. For a given point of interest and task, the map of the acceptable variation in anthropometric parameters is superimposed with the distribution of the same parameters in the given population to identify the extreme individuals. To illustrate the concept, the task space mapping is done for the reach probability of human arms. Unlike the boundary manikins, who are completely defined by the population, the dimensions of these manikins will vary with task, say, a point to be reached, as in the present case. Hence they are referred to here as the task-dependent boundary manikins. Simulations with these manikins would help designers to visualize how differently the extreme individuals would perform the task. Reach probability at the points in a 3D grid in the operational space is computed; for objects overlaid in this grid, approximate probabilities are derived from the grid for rendering them with colors indicating the reach probability. The method may also help in providing a rational basis for selection of personnel for a given task.
Resumo:
Social, economic and political development of a region is dependent on the health and quantity of the natural resources. Integrated approaches in the management of natural resources would ensure sustainability, which demands inventorying, mapping and monitoring of resources considering all components of an ecosystem. The monitoring of hydrological and catchment landscape of river resources have a vital role in the conservation and management of aquatic resources. This paper presents a case study Venkatapura river basin in Uttara Kannada district of Karnataka State, India based on stream hydrology and landuse analyses. The results revealed variations in dissolved oxygen and free carbon dioxide according to the flow nature of the water, and increased amount of phosphates and coliform contamination in streams closer to anthropogenic activities.
Resumo:
The synthesis of dsRNA is analyzed using a pathway model with amplifications caused by the aberrant RNAs. The transgene influx rate is assumed time-decaying considering the fact that the number of transgenes can not be infinite. The dynamics of the transgene induced RNA silencing is investigated using a system of coupled nonautonomous ordinary nonlinear differential equations which describe the model phenomenologically. The silencing phenomena are detected after a period of transcription. Important contributions of certain parameters are discussed with several numerical examples.
Resumo:
In this article, we consider the single-machine scheduling problem with past-sequence-dependent (p-s-d) setup times and a learning effect. The setup times are proportional to the length of jobs that are already scheduled; i.e. p-s-d setup times. The learning effect reduces the actual processing time of a job because the workers are involved in doing the same job or activity repeatedly. Hence, the processing time of a job depends on its position in the sequence. In this study, we consider the total absolute difference in completion times (TADC) as the objective function. This problem is denoted as 1/LE, (Spsd)/TADC in Kuo and Yang (2007) ('Single Machine Scheduling with Past-sequence-dependent Setup Times and Learning Effects', Information Processing Letters, 102, 22-26). There are two parameters a and b denoting constant learning index and normalising index, respectively. A parametric analysis of b on the 1/LE, (Spsd)/TADC problem for a given value of a is applied in this study. In addition, a computational algorithm is also developed to obtain the number of optimal sequences and the range of b in which each of the sequences is optimal, for a given value of a. We derive two bounds b* for the normalising constant b and a* for the learning index a. We also show that, when a < a* or b > b*, the optimal sequence is obtained by arranging the longest job in the first position and the rest of the jobs in short processing time order.
Resumo:
In the present investigation, various kinds of surface textures were attained on the steel plates. Roughness of the textures was varied using various grinding or polishing methods. The surface textures were characterized in terms of roughness parameters using an optical profilometer. Then experiments were conducted using an inclined pin-on-plate sliding apparatus to identify the role of surface texture and its roughness parameters on coefficient of friction and transfer layer formation. In the experiments, a soft polymer (polypropylene) was used for the pin and hardened steel was used for the plate. Experiments were conducted at a sliding velocity of 2 minis in ambient conditions under both dry and lubricated conditions. The normal load was varied from 1 to 120 N during the tests. The morphologies of the worn surfaces of the pins and the formation of a transfer layer on the steel plate surfaces were observed using a scanning electron microscope. Based on the experimental results, it was observed that the transfer layer formation and the coefficient of friction along with its two components, namely adhesion and plowing, were controlled by the surface texture of the harder mating surfaces and were less dependent of surface roughness (R(a)) of the harder mating surfaces. The effect of surface texture on the friction was attributed to the variation of the plowing component of friction for different surfaces. Among the various surface roughness parameters studied, the mean slope of the profile, Delta(a), was found to most accurately characterize variations in the friction and wear behavior. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Frequency-domain scheduling and rate adaptation enable next-generation orthogonal frequency-division multiple access (OFDMA) cellular systems such as Long-Term Evolution (LTE) to achieve significantly higher spectral efficiencies. LTE uses a pragmatic combination of several techniques to reduce the channel-state feedback that is required by a frequency-domain scheduler. In the subband-level feedback and user-selected subband feedback schemes specified in LTE, the user reduces feedback by reporting only the channel quality that is averaged over groups of resource blocks called subbands. This approach leads to an occasional incorrect determination of rate by the scheduler for some resource blocks. In this paper, we develop closed-form expressions for the throughput achieved by the feedback schemes of LTE. The analysis quantifies the joint effects of three critical components on the overall system throughput-scheduler, multiple-antenna mode, and the feedback scheme-and brings out its dependence on system parameters such as the number of resource blocks per subband and the rate adaptation thresholds. The effect of the coarse subband-level frequency granularity of feedback is captured. The analysis provides an independent theoretical reference and a quick system parameter optimization tool to an LTE system designer and theoretically helps in understanding the behavior of OFDMA feedback reduction techniques when operated under practical system constraints.
Resumo:
Hexagonal Dy(OH)(3) and cubic Dy2O3 nanorods were prepared by hydrothermal method. Dy(OH)(3) nanorods was directly obtained at 180 degrees C for 20 h after hydrothermal treatment whereas subsequently heat treatment at 750 degrees C for 2 h gives pure cubic Dy2O3. SEM micrographs reveal that needle shaped rods with different sizes were observed in both the phases. TEM results also confirm this. The TL response of hexagonal Dy(OH)(3) and cubic Dy2O3 nanorods have been analyzed for gamma-irradiation over a wide range of exposures (1-5 kGy). TL glow peak intensity increases with gamma dose in both the phases. The activation energy (E), order of kinetics (6), and frequency factor (s) for both the phases have been determined using Chen's peak shape method. The simple glow curve shape, structure and linear response to gamma-irradiation over a large span of exposures makes the cubic Dy2O3 as a useful dosimetric material to estimate high exposures of gamma-rays. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We reconsider standard uniaxial fatigue test data obtained from handbooks. Many S-N curve fits to such data represent the median life and exclude load-dependent variance in life. Presently available approaches for incorporating probabilistic aspects explicitly within the S-N curves have some shortcomings, which we discuss. We propose a new linear S-N fit with a prespecified failure probability, load-dependent variance, and reasonable behavior at extreme loads. We fit our parameters using maximum likelihood, show the reasonableness of the fit using Q-Q plots, and obtain standard error estimates via Monte Carlo simulations. The proposed fitting method may be used for obtaining S-N curves from the same data as already available, with the same mathematical form, but in cases in which the failure probability is smaller, say, 10 % instead of 50 %, and in which the fitted line is not parallel to the 50 % (median) line.
Resumo:
We have developed a technique to measure the absolute frequencies of optical transitions by using an evacuated Rb-stabilized ring-cavity resonator as a transfer cavity. The absolute frequency of the Rb D-2 line (at 780 nm) used to stabilize the cavity is known and allows us to determine the absolute value of the unknown frequency. We study wavelength-dependent errors due to dispersion at the cavity mirrors by measuring the frequency of the same transition in the Cs D-2 line (at 852 nm) at three cavity lengths. The spread in the values shows that dispersion errors are below 30 kHz, corresponding to a relative precision of 10(-10). We give an explanation for reduced dispersion errors in the ring-cavity geometry by calculating errors due to the lateral shift and the phase shift at the mirrors, and show that they are roughly equal but occur with opposite signs. We have earlier shown that diffraction errors (due to Guoy phase) are negligible in the ring-cavity geometry compared to a linear cavity; the reduced dispersion error is another advantage. Our values are consistent with measurements of the same transition using the more expensive frequency-comb technique. Our simpler method is ideally suited for measuring hyperfine structure, fine structure, and isotope shifts, up to several hundreds of gigahertz.
Resumo:
In this paper, size dependent linear free flexural vibration behavior of functionally graded (FG) nanoplates are investigated using the iso-geometric based finite element method. The field variables are approximated by non-uniform rational B-splines. The nonlocal constitutive relation is based on Eringen's differential form of nonlocal elasticity theory. The material properties are assumed to vary only in the thickness direction and the effective properties for the FG plate are computed using Mori-Tanaka homogenization scheme. The accuracy of the present formulation is demonstrated considering the problems for which solutions are available. A detailed numerical study is carried out to examine the effect of material gradient index, the characteristic internal length, the plate thickness, the plate aspect ratio and the boundary conditions on the global response of the FG nanoplate. From the detailed numerical study it is seen that the fundamental frequency decreases with increasing gradient index and characteristic internal length. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we address a physics-based closed-form analytical model of flexural phonon-dependent diffusive thermal conductivity (kappa) of suspended rectangular single layer graphene sheet. A quadratic dependence of the out-of-plane phonon frequency, generally called flexural phonons, on the phonon wave vector has been taken into account to analyze the behavior of kappa at lower temperatures. Such a dependence has further been used for the determination of second-order three-phonon Umklapp and isotopic scatterings. We find that these behaviors in our model are best explained through the upper limit of Debye cut-off frequency in the second-order three-phonon Umklapp scattering of the long phonon waves that actually remove the thermal conductivity singularity by contributing a constant scattering rate at low frequencies and note that the out-of-plane Gruneisen parameter for these modes need not be too high. Using this, we clearly demonstrate that. follows a T-1.5 and T-2 law at lower and higher temperatures in the absence of isotopes, respectively. However in their presence, the behavior of kappa sharply deviates from the T-2 law at higher temperatures. The present geometry-dependent model of kappa is found to possess an excellent match with various experimental data over a wide range of temperatures which can be put forward for efficient electro-thermal analyses of encased/supported graphene.