196 resultados para fine particle
Resumo:
This paper critically appraises the limitations of the liquid-limit water content of clayey soils determined conventionally either by percussion cup or by the cone penetration method. It is shown that the conventional liquid limit and plastic limit are arbitrary, strength-based water contents and that they cannot represent the plasticity limits, and that the state of the soil-water system at the conventional liquid limit does not correspond to a stress-free reference state. The present investigation identifies three characteristic limiting water contents for a soil-water system which have well-defined, unique mechanisms controlling them, namely the free swell limit, settling limit and shrinkage limit. Simple procedures for the determination of the free swell limit and settling limit of natural soils are presented. The settling limit is shown to be the 'real liquid limit' of any clayey soil. With a number of experimental illustrations, it is clearly shown that the settling limit represents the maximum water-holding capacity of clayey soils and that it corresponds to the stress-free reference state.
Resumo:
Carbon fibres/particles can be satisfactory reinforcing material in polymer, ceramic and metal matrices. Carbon fibres/particles reinforced polymer matrix composites and ceramic matrix composites are being used extensively in critical areas of application, but carbon fibre - metal matrix composites have not reached that stage yet. This paper discusses the salient aspects of production and specific properties of carbon fibre/particle reinforced cast metal matrix composites. It is envisaged that these materials will find extensive applications where cost, weight and thermal expansion are the key factors.
Resumo:
A model of the precipitation process in reverse micelles has been developed to calculate the size of fine particles obtained therein. While the method shares several features of particle nucleation and growth common to precipitation in large systems, complexities arise in describing the processes of nucleation, due to the extremely small size of a micelle and of particle growth caused by fusion among the micelles. Occupancy of micelles by solubilized molecules is governed by Poisson statistics, implying most of them are empty and cannot nucleate of its own. The model therefore specifies the minimum number of solubilized molecules required to form a nucleus which is used to calculate the homogeneous nucleation rate. Simultaneously, interaction between micelles is assumed to occur by Brownian collision and instantaneous fusion. Analysis of time scales of various events shows growth of particles to be very fast compared to other phenomena occurring. This implies that nonempty micelles either are supersaturated or contain a single precipitated particle and allows application of deterministic population balance equations to describe the evolution of the system with time. The model successfully predicts the experimental measurements of Kandori ct al.(3) on the size of precipitated CaCO3 particles, obtained by carbonation of reverse micelles containing aqueous Ca(OH)(2) solution.
Resumo:
Standard Proctor compaction test data were generated for 3 soils with liquid limit water contents ranging from 48% to 84%. It has been established that by defining a soil by its liquid limit and coarse fraction, the path of compaction for a specific compactive effort can be predicted via a simple density-water content-liquid limit relationship. (Abstract quotes from original text)
Resumo:
Synthesis and the thermal decomposition behavior of new molecular precursors, strontium, and calcium zirconyl citrates are presented. The pathway to the metazirconate formation has been found to proceed through a multistep process. The precursors yield SrZrO3 and CaZrO3 fine powders at temperatures as low as 650 degrees C. Physico-chemical, spectroscopic, thermoanalytical, and microscopic techniques have enabled the identification of the sequence of events leading to the perovskite formation and proposition of a thermolysis scheme. Retention of the molecular level mixing of the metal ions during the course of the precursor decomposition is supported by these techniques. Prior to the formation of MZrO3 (M = Sr and Ca) an ionic oxycarbonate, M2Zr2O5CO3 (M = SI. and Ca), intermediate is produced by the thermal decomposition of the citrate precursors.
Resumo:
Ultra low-load-dynamic microhardness testing facilitates the hardness measurements in a very low volume of the material and thus is suited for characterization of the interfaces in MMC's. This paper details the studies on age-hardening behavior of the interfaces in Al-Cu-5SiC(p) composites characterized using this technique. Results of hardness studies have been further substantiated by TEM observations. In the solution-treated condition, hardness is maximum at the particle/matrix interface and decreases with increasing distance from the interface. This could be attributed to the presence of maximum dislocation density at the interface which decreases with increasing distance from the interface. In the case of composites subjected to high temperature aging, hardening at the interface is found to be faster than the bulk matrix and the aging kinetics becomes progressively slower with increasing distance from the interface. This is attributed to the dislocation density gradient at the interface, leading to enhanced nucleation and growth of precipitates at the interface compared to the bulk matrix. TEM observations reveal that the sizes of the precipitates decrease with increasing distance from the interface and thus confirms the retardation in aging kinetics with increasing distance from the interface.
Resumo:
We present experimental x-ray-absorption spectra at the oxygen and 3d transition-metal K edges of LaFeO3 and LaCoO3. We interpret the experimental results in terms of detailed theoretical calculations based on multiple-scattering theory. Along with providing an understanding of the origin of various experimental features, we investigate the effects of structural distortions and the core-hole potential in determining the experimental spectral shape. The results indicate that the core-hole potential as well as many-body effects within the valence electrons do not have any strong effect on the spectra suggesting that the spectral features can be directly interpreted in terms of the electronic structure of such compounds.
Resumo:
We study the transient response of a colloidal bead which is released from different heights and allowed to relax in the potential well of an optical trap. Depending on the initial potential energy, the system's time evolution shows dramatically different behaviors. Starting from the short-time reversible to long-time irreversible transition, a stationary reversible state with zero net dissipation can be achieved as the release point energy is decreased. If the system starts with even lower energy, it progressively extracts useful work from thermal noise and exhibits an anomalous irreversibility. In addition, we have verified the Transient Fluctuation Theorem and the Integrated Transient Fluctuation Theorem even for the non-ergodic descriptions of our system. Copyright (C) EPLA, 2011
Resumo:
Stationary velocity distribution functions are determined for a particle in a gravitational field driven by a vibrating surface in the limit of small dissipation. It is found that the form of the distribution function is sensitive to the mechanism of energy dissipation, inelastic collisions or viscous drag, and also to the form of the amplitude function of the vibrating surface. The velocity distributions obtained analytically are found to be in excellent agreement with the results of computer simulations in the limit of low dissipation. [S0031-9007(99)08898-5].
Resumo:
This is an exploratory study to illustrate the feasibility of detecting delamination type of damage in polymeric laminates with one layer of magnetostrictive particles. One such beam encircled with excitation and sensing coils is used for this study. The change in stress gradient of the magnetostrictive layer in the vicinity of delamination shows up as a change in induced voltage in the sensing coil, and therefore provides a means to sense the presence of delamination. Recognizing the constitutive behavior of the Terfenol-D material is highly nonlinear, analytical expressions for the constitutive relations are developed by using curve fitting techniques to the experimental data. Analytical expressions that relate the applied excitation field with the stress and magnetic flux densities induced in the magnetostrictive layer are developed. Numerical methods are used to find the relative change in the induced voltage in the sensing coil due to the presence of delamination. A typical example of unidirectional laminate, with embedded delaminations, is used for the simulation purposes. This exploratory study illustrates that the open-circuit voltage induced in the sensing coil changes significantly (as large of 68 millivolts) with the occurrence of delamination. This feature can be exploited for device off-line inspection techniques and/or linking monitoring procedures for practical applications.
Resumo:
Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (sigma = K-1 epsilon(n1)) at higher (> 623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower (< 623 K) temperatures. The Ludwigson modification of Hollomon's equation, sigma = K-1 epsilon(n1) + exp (K-2 + n(2) epsilon), was found to describe the flow curve. In general, the flow parameters n(1), K-1, n(2) and K-2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n(1) Value increased and the K-1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of nl with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n(1).
Resumo:
Nanocrystalline ZnO:Mn (0.1 mol%) phosphors have been successfully prepared by self propagating, gas producing solution combustion method. The powder X-ray diffraction of as-formed ZnO:Mn sample shows, hexagonal wurtzite phase with particle size of similar to 40 nm. For Mn doped ZnO, the lattice parameters and volume of unit cell (a=3.23065 angstrom, c=5.27563 angstrom and V=47.684 (angstrom)(3)) are found to be greater than that of undoped ZnO (a=3.19993 angstrom, c=5.22546 angstrom and V=46.336 (angstrom)(3)). The SEM micrographs reveal that besides the spherical crystals, the powders also contained several voids and pores. The TEM photograph also shows the particles are approximately spherical in nature. The FTIR spectrum shows two peaks at similar to 3428 and 1598 cm(-1) which are attributed to O-H stretching and H-O-H bending vibration. The PL spectra of ZnO:Mn indicate a strong green emission peak at 526 nm and a weak red emission at 636 nm corresponding to T-4(1) -> (6)A(1) transition of Mn2+ ions. The EPR spectrum exhibits fine structure transition which will be split into six hyperfine components due to Mn-55 hyperfine coupling giving rise to all 30 allowed transitions. From EPR spectra the spin-Hamiltonian parameters have been evaluated and discussed. The magnitude of the hyperfine splitting (A) constant indicates that there exists a moderately covalent bonding between the Mn2+ ions and the surrounding ligands. The number of spins participating in resonance (N), its paramagnetic susceptibility (chi) have been evaluated. (C) 2011 Elsevier B.V. All rights reserved.