209 resultados para energy system
Resumo:
The article presents a generalized analytical expression for description of the integral excess Gibbs free energy of mixing of a ternary system. Twelve constants of the equation are assessed by the least mean squares regressional analysis of the experimental integral excess data of the constituent binaries; three ternary parameters are evaluated by a regressional analysis based on the partial experimental data of a component of the ternary system. The assessed values of the ternary parameters describe the nature of the ternary interaction in the system. Activities and isoactivities of the components in the Ag-Au-Cu system at 1350 K are calculated and found to be in good agreement with the experimental data. This analytical treatment is particularly useful to ternary systems where the thermodynamic data are available from different sources.
Resumo:
Phase relations in the system La-Rh-O at 1223 Ii have been determined by examination of equilibrated samples by optical and scanning electron microscopy, powder X-ray diffraction (XRD), and energy-dispersive analysis of X-rays (EDAX). Only one ternary oxide, LaRhO3, with distorted orthorhombic perovskite structure (Pbnm, a = 0.5525, b = 0.5680, and c = 0.7901 nm) was identified. The alloys and intermetallics along the La-Rh binary are in equilibrium with La2O3. The thermodynamic properties of LaRhO3 were determined in the temperature range 890 to 1310 K, using a solid-state cell incorporating yttria-stabilized zirconia as the electrolyte. A new four-compartment design of the emf cell was used to enhance the accuracy of measurement. For the reaction 1/2La(2)O(3) + 1/2Rh(2)O(3) --> LaRhO3, Delta G degrees = - 70 780 + 4.89T (+/- 90) J.mol(-1) The compound decomposes on heating to a mixture of La2O3, Ph and O-2. The calculated decomposition temperatures are 1843 (+/- 5) K in pure O-2 and 1728 (+/- 5) K in air at a pressure of 1.01 x 10(5) Pa. The phase diagrams for the system La-Rh-O at different partial pressures of oxygen are calculated from the thermodynamic information.
Resumo:
Phase relationships in the CaO-SrO-CuO system in pure oxygen at 1.01 x 10(5) Pa pressure were determined by equilibrating different compositions at 1123 K for similar to 120 h and analyzing the phases present in the quenched samples using X-ray diffraction (XRD), optical and scanning electron microscopy, and energy dispersive analysis of X-rays (EDAX). Four solid solution series were observed in the system, The CawSr1-wO monoxide solid solution with rock-salt structure was found to exhibit an asymmetric miscibility gap, The mixing properties of the monoxide system were deduced using a subregular solution model, For the (CaxSr1-x)(2)CuO3 series, a complete solid solution range with orthorhombic space group Immm was obtained. Calcium substituted for strontium up to 68 at. % in SrCuO2+delta and 51.5 at. % in Sr14Cu24O41-delta. The tie lines between the solid solutions were determined accurately, The activity-composition relations in (CaxSr1-x)(2)CuO3, CaySr1-yCuO2+delta, and (Ca2Sr1-z)(14)Cu24O41-delta solid solutions were determined from experimental tie lines. Activities in the (CaxSr1-x)(2)CuO3 and CaySr1-yCuO2+delta series were close to the predictions of the Temkin model, The behavior of the (CazSr1-(z))(14)Cu24O41-delta solid solution was more complex, with the activity of SrCu(24/14)O-(41-delta/14) exhibiting both positive and negative deviations from ideality. Gibbs energy of formation of the CaCuO2+delta metastable phase at 1123 K was deduced from an analysis of the phase diagram.
Resumo:
The isothermal section of the phase diagram for the system NiO-MgO-SiO2 at 1373 K is established, The tie lines between (NiXMg1-X)O solid solution with rock salt structure and orthosilicate solid solution (NiYMg1-Y)Si0.5O2 and between orthosilicate and metasilicate (NiZMg1-Z)SiO3 crystalline solutions are determined using electron probe microanalysis (EPMA) and lattice parameter measurement on equilibrated samples, Although the monoxides and orthosilicates of Ni and Mg form a continuous range of solid solutions, the metasilicate phase exists only for 0 < Z < 0.096, The activity of NiO in the rock salt solid solution is determined as a function of composition and temperature in the range of 1023 to 1377 K using a solid state galvanic cell, The Gibbs energy of mixing of the monoxide solid solution can be expressed by a pseudo-subregular solution model: Delta G(ex) = X(1 - X)[(-2430 + 0.925T)X + (-5390 + 1.758T)(1 - X)] J/mol, The thermodynamic data for the rock salt phase are combined with information on interphase partitioning of Ni and Mg to generate the mixing properties for the orthosilicate and the metasilicate solid solutions, The regular solution model describes the orthosilicate and the metasilicate solid solutions at 1373 K within experimental uncertainties, The regular solution parameter Delta G(ex)/Y(1 - Y) is -820 (+/-70) J/mol for the orthosilicate solid solution, The corresponding value for the metasilicate solid solution is -220 (+/-150) J/mol, The derived activities for the orthosilicate solid solution are discussed in relation to the intracrystalline ion exchange equilibrium between M1 and M2 sites. The tie line information, in conjunction with the activity data for orthosilicate and metasilicate solid solutions, is used to calculate the Gibbs energy changes for the intercrystalline ion exchange reactions, Combining this with the known data for NiSi0.5O2, Gibbs energies of formation of MgSi0.5O2, MgSiO3, and metastable NiSiO3 are calculated, The Gibbs energy of formation of NiSiO3, from its component oxides, is equal to 7.67 (+/-0.6) kJ/mol at 1373 K.
Resumo:
The ability of Static Var Compensators (SVCs) to rapidly and continuously control reactive power in response to changing system conditions can result in the improvement of system stability and also increase the power transfer in the transmission system. This paper concerns the application of strategically located SVCs to enhance the transient stability limits and the direct evaluation of the effect of these SVCs on transient stability using a Structure Preserving Energy Function (SPEF). The SVC control system can be modelled from the steady- state control characteristic to accurately simulate its effect on transient stability. Treating the SVC as a voltage-dependent reactive power load leads to the derivation of a path-independent SPEF for the SVC. Case studies on a 10-machine test system using multiple SVCs illustrate the effects of SVCs on transient stability and its accurate prediction.
Resumo:
Phase relations in the system Ca-Pb-O at 1100 K have been determined by equilibrating 18 compositions in the ternary and identifying the phases present in quenched samples by X-ray diffraction and energy dispersive X-ray analysis (EDX). Only one ternary compound Ca2PbO4 was found to be present. The compound coexists with CaO and PbO. The intermetallic compounds Ca2Pb, Ca5Pb3 and CaPb and liquid alloys are in equilibrium with CaO. The standard Gibbs energies of formation of Ca2PbO4 (880 - 1100 K) and Pb3O4 (770 - 910 K) were determined using solid-state cells based on yttria-stabilized zirconia as the solid electrolyte. Pure oxygen gas at 0.1 MPa was used as the reference electrode. For measurements on Ca2PbO4, a novel cell design with three electrodes in series, separated by solid electrolyte membranes, was used to avoid polarization of the electrode containing three solid phases. Two three-phase electrodes were used. The first absorbs the electrochemical flux of oxygen from the reference electrode to the measuring electrode. The other three-phase electrode, which is unaffected by the oxygen flux through the solid electrolyte, is used for electromotive force (EMF) measurement. The results from EMF studies were cross-checked using thermogravimetry (TG) under controlled oxygen partial pressures. The stability of Pb3O4 was investigated using a conventional solid-state cell with RuO2 electrodes. The results can be summarized by the following equations: 2CaO + PbO +1/2O(2) --> Ca2PbO4 Delta(r)G degrees/J mol(-1) = (- 128340 + 93.21 T/K) +/- 200 3PbO + 1/2O(2) --> Pb3O4 Delta(r)G degrees/J mol(-1) = (- 70060 + 77.5 T/K) +/- 150
Resumo:
Positions of potential energy minima for spherical monatomic sorbates in zeolite NaY have been identified for different sizes of the sorbate. It is found that for small sorbates (sigma less than or equal to 4.96 Angstrom) there are only six adsorption sites per alpha-cage, which are located close to the inner surface of the alpha-cage. For larger sorbates, additional sites of comparable energies appear close to the 12-ring window which forms the bottleneck for intercage diffusion. Minimum energy paths between these sites have been computed. These suggest that the barriers for both intracage and intercage site-to-site migrations are comparable and decrease with increase in sorbate size. Earlier simulation studies on the diffusion of monatomic sorbates in zeolites indicated that there is a dramatic change in the nature of dependence of D on sorbate size around 4.96 Angstrom, for zeolite NaY. Therefore, the present results suggest that the dependence of D on sorbate size and the changes in the potential energy landscape are correlated. The sorbate-zeolite system is characterized by a flatter potential energy landscape when the sorbate size is large. (C) 1999 American Institute of Physics. [S0021-9606(99)51110-0].
Resumo:
The present research describes the modeling of the thermodynamic properties of the liquid Al-Ga-In-As alloys at 1073 and 1173 K, and investigates the solid-liquid equilibria in the systems. The isothermal molar excess free energy function for the liquid alloys is represented in terms of 37 parameters pertaining to six of the constituent binaries, four ternaries and the quaternary interactions in the system. The corresponding solid alloys which consist of AlAs, GaAs and InAs are assumed to be quasi-regular ternary solutions. The solidus and liquidus compositions are calculated at 1073 and 1173 K using the derived values of the partial components for the solid and liquid alloys at equilibrium. They are in good agreement with those of the experimentally determined values available in the literature. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
In this paper, power management algorithms for energy harvesting sensors (EHS) that operate purely based on energy harvested from the environment are proposed. To maintain energy neutrality, EHS nodes schedule their utilization of the harvested power so as to save/draw energy into/from an inefficient battery during peak/low energy harvesting periods, respectively. Under this constraint, one of the key system design goals is to transmit as much data as possible given the energy harvesting profile. For implementational simplicity, it is assumed that the EHS transmits at a constant data rate with power control, when the channel is sufficiently good. By converting the data rate maximization problem into a convex optimization problem, the optimal load scheduling (power management) algorithm that maximizes the average data rate subject to energy neutrality is derived. Also, the energy storage requirements on the battery for implementing the proposed algorithm are calculated. Further, robust schemes that account for the insufficiency of battery storage capacity, or errors in the prediction of the harvested power are proposed. The superior performance of the proposed algorithms over conventional scheduling schemes are demonstrated through computations using numerical data from solar energy harvesting databases.
Resumo:
A wireless Energy Harvesting Sensor (EHS) needs to send data packets arriving in its queue over a fading channel at maximum possible throughput while ensuring acceptable packet delays. At the same time, it needs to ensure that energy neutrality is satisfied, i.e., the average energy drawn from a battery should equal the amount of energy deposited in it minus the energy lost due to the inefficiency of the battery. In this work, a framework is developed under which a system designer can optimize the performance of the EHS node using power control based on the current channel state information, when the EHS node employs a single modulation and coding scheme and the channel is Rayleigh fading. Optimal system parameters for throughput optimal, delay optimal and delay-constrained throughput optimal policies that ensure energy neutrality are derived. It is seen that a throughput optimal (maximal) policy is packet delay-unbounded and an average delay optimal (minimal) policy achieves negligibly small throughput. Finally, the influence of the harvested energy profile on the performance of the EHS is illustrated through the example of solar energy harvesting.
Resumo:
We explore the salient features of the `Kitaev ladder', a two-legged ladder version of the spin-1/2 Kitaev model on a honeycomb lattice, by mapping it to a one-dimensional fermionic p-wave superconducting system. We examine the connections between spin phases and topologically non-trivial phases of non-interacting fermionic systems, demonstrating the equivalence between the spontaneous breaking of global Z(2) symmetry in spin systems and the existence of isolated Majorana modes. In the Kitaev ladder, we investigate topological properties of the system in different sectors characterized by the presence or absence of a vortex in each plaquette of the ladder. We show that vortex patterns can yield a rich parameter space for tuning into topologically non-trivial phases. We introduce and employ a new topological invariant for explicitly determining the presence of zero energy Majorana modes at the boundaries of such phases. Finally, we discuss dynamic quenching between topologically non-trivial phases in the Kitaev ladder and, in particular, the post-quench dynamics governed by tuning through a quantum critical point.
Resumo:
An isothermal section of the phase diagram for the system Eu - Pd - O at 1223 K has been established by equilibration of samples representing 20 different compositions, and phase identification after quenching by optical and scanning electron microscopy, X-ray powder diffraction, and energy dispersive spectroscopy. Three ternary oxides, Eu4PdO7, Eu2PdO4, and Eu2Pd2O5, were identified. Liquid alloys and the intermetallic compounds EuPd2 and EuPd3 were found to be in equilibrium with EuO. The compound EuPd3 was also found to coexist separately with Eu3O4 and Eu2O3. The oxide phase in equilibrium with EuPd5 and Pd rich solid solution was Eu2O3. Based on the phase relations, four solid state cells were designed to measure the Gibbs energies of formation of the three ternary oxides in the temperature range from 925 to 1350 K. Although three cells are sufficient to obtain the properties of the three compounds, the fourth cell was deployed to crosscheck the data. An advanced version of the solid state cell incorporating a buffer electrode with yttria stabilised zirconia solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode was used for high temperature thermodynamic measurements. Equations for the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides Eu2O3 with C type structure and PdO have been established. Based on the thermodynamic information, isothermal chemical potential diagrams and isobaric phase diagrams for the system Eu - Pd - O have been developed.
Resumo:
We investigate the electronic structure of Ca1-xSrxVO3 using photoemission spectroscopy. Core level spectra establish an electronic phase separation at the surface, leading to a distinctly different surface electronic structure compared to the bulk. Analysis of the photoemission spectra of this system allowed us to separate the surface and bulk contributions. These results help us to understand properties related to two vastly differing energy scales, namely the low-energy scale of thermal excitations ( $\sim\!k_{\rm B}T$) and the high-energy scale related to Coulomb and other electronic interactions.
Resumo:
Lead ruthenate is used as a bifunctional electrocatalyst for both oxygen evolution and reduction and as a conducting component in thick-film resistors. It also has potential applications in supercapacitors and solid oxide fuel cells. However, thermodynamic properties of the compound have not been reported in the literature. The standard Gibbs energy of formation has now been determined in the temperature range from 873 to 1123 K using a solid-state cell incorporating yttria-stabilized zirconia (YSZ) as the electrolyte, a mixture of PbO + Pb2Ru2O6.5 + Ru as the measuring electrode, and Ru + RuO2 as the reference. The design of the measuring electrode is based on a study of phase relations in the ternary system Pb–Ru–O at 1123 K. For the reaction,S0884291400095625_eqnU1 the standard enthalpy of formation and standard entropy at 298.15 K are estimated from the high-temperature measurements. An oxygen potential diagram for the system Pb–Ru–O is composed based on data obtained in this study and auxiliary information from the literature
Resumo:
Sensor network nodes exhibit characteristics of both embedded systems and general-purpose systems.A sensor network operating system is a kind of embedded operating system, but unlike a typical embedded operating system, sensor network operatin g system may not be real time, and is constrained by memory and energy constraints. Most sensor network operating systems are based on event-driven approach. Event-driven approach is efficient in terms of time and space.Also this approach does not require a separate stack for each execution context. But using this model, it is difficult to implement long running tasks, like cryptographic operations. A thread based computation requires a separate stack for each execution context, and is less efficient in terms of time and space. In this paper, we propose a thread based execution model that uses only a fixed number of stacks. In this execution model, the number of stacks at each priority level are fixed. It minimizes the stack requirement for multi-threading environment and at the same time provides ease of programming. We give an implementation of this model in Contiki OS by separating thread implementation from protothread implementation completely. We have tested our OS by implementing a clock synchronization protocol using it.