463 resultados para diffusion layer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical studies have been carried out to examine internal flow choking in the inert simulators of a dual-thrust motor. Using a two-dimensional k-omega turbulence model, detailed parametric studies have been carried out to examine aerodynamic choking and the existence of a fluid throat at the transition region during the startup transient of dual-thrust motors. This code solves standard k-omega turbulence equations with shear flow corrections using a coupled second-order-implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-averaged, Navier-Stokes equations is employed. It was observed that, at the subsonic inflow conditions, there is a possibility of the occurrence of internal flow choking in dual-thrust motors due to the formation of a fluid throat at the beginning of the transition region induced by area blockage caused by boundary-layer-displacement thickness. It has been observed that a 55% increase in the upstream port area of the dual-thrust motor contributes to a 25% reduction in blockage factor at the transition region, which could negate the internal How choking and supplement with an early choking of the dual-thrust motor nozzle. If the height of the upstream port relative to the motor length is too small, the developing boundary layers from either side of the port can interact, leading to a choked,flow. On the other hand, if the developing boundary layers are far enough apart, then choking does not occur. The blockage factor is greater in magnitude for the choked case than for the unchoked case. More tangible explanations are presented in this paper for the boundary-layer blockage and the internal flow choking in dual-thrust motors, which hitherto has been unexplored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Though silicon tunnel field effect transistor (TFET) has attracted attention for sub-60 mV/decade subthreshold swing and very small OFF current (IOFF), its practical application is questionable due to low ON current (ION) and complicated fabrication process steps. In this paper, a new n-type classical-MOSFET-alike tunnel FET architecture is proposed, which offers sub-60 mV/decade subthreshold swing along with a significant improvement in ION. The enhancement in ION is achieved by introducing a thin strained SiGe layer on top of the silicon source. Through 2D simulations it is observed that the device is nearly free from short channel effect (SCE) and its immunity towards drain induced barrier lowering (DIBL) increases with increasing germanium mole fraction. It is also found that the body bias does not change the drive current but after body current gets affected. An ION of View the MathML source and a minimum average subthreshold swing of 13 mV/decade is achieved for 100 nm channel length device with 1.2 V supply voltage and 0.7 Ge mole fraction, while maintaining the IOFF in fA range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barrierless chemical reactions have often been modeled as a Brownian motion on a one-dimensional harmonic potential energy surface with a position-dependent reaction sink or window located near the minimum of the surface. This simple (but highly successful) description leads to a nonexponential survival probability only at small to intermediate times but exponential decay in the long-time limit. However, in several reactive events involving proteins and glasses, the reactions are found to exhibit a strongly nonexponential (power law) decay kinetics even in the long time. In order to address such reactions, here, we introduce a model of barrierless chemical reaction where the motion along the reaction coordinate sustains dispersive diffusion. A complete analytical solution of the model can be obtained only in the frequency domain, but an asymptotic solution is obtained in the limit of long time. In this case, the asymptotic long-time decay of the survival probability is a power law of the Mittag−Leffler functional form. When the barrier height is increased, the decay of the survival probability still remains nonexponential, in contrast to the ordinary Brownian motion case where the rate is given by the Smoluchowski limit of the well-known Kramers' expression. Interestingly, the reaction under dispersive diffusion is shown to exhibit strong dependence on the initial state of the system, thus predicting a strong dependence on the excitation wavelength for photoisomerization reactions in a dispersive medium. The theory also predicts a fractional viscosity dependence of the rate, which is often observed in the reactions occurring in complex environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a simple and energy efficient distributed change detection scheme for sensor networks based on Page's parametric CUSUM algorithm. The sensor observations are IID over time and across the sensors conditioned on the change variable. Each sensor runs CUSUM and transmits only when the CUSUM is above some threshold. The transmissions from the sensors are fused at the physical layer. The channel is modeled as a multiple access channel (MAC) corrupted with IID noise. The fusion center which is the global decision maker, performs another CUSUM to detect the change. We provide the analysis and simulation results for our scheme and compare the performance with an existing scheme which ensures energy efficiency via optimal power selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of decentralized sequential change detection with conditionally independent observations. The sensors form a star topology with a central node called fusion center as the hub. The sensors transmit a simple function of their observations in an analog fashion over a wireless Gaussian multiple access channel and operate under either a power constraint or an energy constraint. Simulations demonstrate that the proposed techniques have lower detection delays when compared with existing schemes. Moreover we demonstrate that the energy-constrained formulation enables better use of the total available energy than a power-constrained formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed investigations into the dielectric dispersion phenomenon in the giant dielectric constant material CaCu3Ti4O12 (CCTO) around room temperature revealed the existence of two successive dielectric relaxations. In the temperature domain, a new dielectric relaxation was clearly observed around 250K, in addition to the well-investigated dielectric relaxation close to 100K. The effect of sintering and doping (La3+) on the strength of these dielectric relaxations were studied in detail. The sintering temperature as well as its duration was found to have tremendous influence on the dielectric relaxation that was encountered around 250 K. This Maxwell-Wagner (M-W) type of relaxation was found to be originating from the surface layer containing the Cu-rich phase, which was ascribed to the difference in the oxygen content between the surface and the interior of the sample. Interestingly, this particular additional relaxation was not observed in La2/3Cu3Ti4O12, a low dielectric constant member of the CCTO family, in which the segregation of Cu-rich phase on the surface was absent. Indeed the correlation between the new relaxation and the presence of Cu-rich phase in CCTO ceramics was further corroborated by the absence of the same after removing the top and bottom layers. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early studies on grain boundary sliding (GBS) in Mg alloys have suggested frequently that the contribution of GBS to creep is high even under conditions corresponding to dislocation creep. The role of creep strain and grain size in influencing the experimental measurements has not been clearly identified. Grain boundary sliding measurements were conducted in detail over experimental conditions corresponding to diffusion creep as well as dislocation creep in a single-phase Mg-0.7 wt pet Al alloy. The results indicated clearly that the GBS contribution to creep was Very high during,, diffusion creep at low stresses (similar to 75 pct) and substantially reduced during dislocation creep at high stresses (similar to 15 pct). These measurements were consistent with the observation of significant intragranular slip band activity observed in most grains at high stresses and very little slip band activity at low stresses. The experimental measurements and analysis indicated also that the GBS contribution to creep was high during the initial stages of creep and decreased to a steady-state value at large strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface texture of harder mating surfaces plays an important role during sliding against softer materials and hence the importance of characterizing the surfaces in terms of roughness parameters. In the present investigation, basic studies were conducted using inclined pin-on-plate sliding tester to understand the surface texture effect of hard surfaces on coefficient of friction and transfer layer formation. A tribological couple made of a super purity aluminium pin against steel plate was used in the tests. Two surface parameters of steel plates, namely roughness and texture, were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture and are independent of surface roughness (R-a). Among the various surface roughness parameters, the average or the mean slope of the profile was found to explain the variations best. Under lubricated conditions, stick-slip phenomena was observed, the amplitude of which depends on the plowing component of friction. The presence of stick-slip motion under lubricated conditions could be attributed to the molecular deformation of the lubricant component confined between asperities. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted with two, smooth hills, lying well within the boundary layer over a flat plate mounted in a wind tunnel. One hill was shallow, with peak height 1.5 mm and width 50 mm; the other, steep, 3 mm high and 30 mm wide. Since the hills occupied one-half of the tunnel span, streamwise vorticity formed near the hills' edge. At a freestream speed of 3.5 m/s, streaks formed with inflectional wall-normal and spanwise velocity profiles but without effecting transition. Transition, observed at 7.5 m/s, took different routes with the two hills. With the steep hill, streamwise velocity signals exhibited the passage of a wave packet which intensified before breakdown to turbulence. With the shallow hill there was a broad range of frequencies present immediately downstream of the hill. These fluctuations grew continuously and transition occurred within a shorter distance. Since the size of the streamwise vorticity generated at the hill edge is of the order of the hill height, the shallow hill generates vorticity closer to the wall and supports an earlier transition, whereas the steep hill creates a thicker vortex and associated streaks which exhibit oscillations due to their own instability as an additional precursor stage before transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, a new flame extinction model based on the k/epsilon turbulence time scale concept is proposed to predict the flame liftoff heights over a wide range of coflow temperature and O-2 mass fraction of the coflow. The flame is assumed to be quenched, when the fluid time scale is less than the chemical time scale ( Da < 1). The chemical time scale is derived as a function of temperature, oxidizer mass fraction, fuel dilution, velocity of the jet and fuel type. The present extinction model has been tested for a variety of conditions: ( a) ambient coflow conditions ( 1 atm and 300 K) for propane, methane and hydrogen jet flames, ( b) highly preheated coflow, and ( c) high temperature and low oxidizer concentration coflow. Predicted flame liftoff heights of jet diffusion and partially premixed flames are in excellent agreement with the experimental data for all the simulated conditions and fuels. It is observed that flame stabilization occurs at a point near the stoichiometric mixture fraction surface, where the local flow velocity is equal to the local flame propagation speed. The present method is used to determine the chemical time scale for the conditions existing in the mild/ flameless combustion burners investigated by the authors earlier. This model has successfully predicted the initial premixing of the fuel with combustion products before the combustion reaction initiates. It has been inferred from these numerical simulations that fuel injection is followed by intense premixing with hot combustion products in the primary zone and combustion reaction follows further downstream. Reaction rate contours suggest that reaction takes place over a large volume and the magnitude of the combustion reaction is lower compared to the conventional combustion mode. The appearance of attached flames in the mild combustion burners at low thermal inputs is also predicted, which is due to lower average jet velocity and larger residence times in the near injection zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-diffusion properties of pure CH4 and its binary mixture with CO2 within MY zeolite have been investigated by combining an experimental quasi-elastic neutron scattering (QENS) technique and classical Molecular dynamics simulations. The QENS measurements carried out at 200 K led to an unexpected self-diffusivity profile for Pure CH4 with the presence of a maximum for a loading of 32 CH4/unit cell, which was never observed before for the diffusion of apolar species in azeolite system With large windows. Molecular dynamics simulations were performed using two distinct microscopic models for representing the CH4/NaY interactions. Depending on the model, we are able to fairly reproduce either the magnitude or the profile of the self-diffusivity.Further analysis allowed LIS to provide some molecular insight into the diffusion mechanism in play. The QENS measurements report only a slight decrease of the self-diffusivity of CH4 in the presence of CO2 when the CO2 loading increases. Molecular dynamics simulations successfully capture this experimental trend and suggest a plausible microscopic diffusion mechanism in the case of this binary mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fabrication of single-component multilayer thin films still remains a challenging task via the layer-by-layer (LbL) approach. In this communication, we report the self-assembly of single-component multilayer thin films on flat and colloidal substrates through glutaraldehyde mediated covalent bonding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a complete asymptotic analysis of a simple model for the evolution of the nocturnal temperature distribution on bare soil in calm clear conditions. The model is based on a simplified flux emissivity scheme that provides a nondiffusive local approximation for estimating longwave radiative cooling near ground. An examination of the various parameters involved shows that the ratio of the characteristic radiative to the diffusive timescale in the problem is of order 10(-3), and can therefore be treated as a small parameter (mu). Certain other plausible approximations and linearization lead to a new equation whose asymptotic solution as mu --> 0 can be written in closed form. Four regimes, consishttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=27192&stage=core#tting of a transient at nominal sunset, a radiative-diffusive boundary ('Ramdas') layer on ground, a boundary layer transient and a radiative outer solution, are identified. The asymptotic solution reproduces all the qualitative features of more exact numerical simulations, including the occurrence of a lifted temperature minimum and its evolution during night, ranging from continuing growth to relatively sudden collapse of the Ramdas layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field-effect transistor characteristics of few-layer graphenes prepared by several methods have been investigated in comparison with those of single-layer graphene prepared by the in situ reduction of single-layer graphene oxide. Ambipolar features have been observed with single-layer graphene and n-type behaviour with all the few-layer graphenes, the best characteristics being found with the graphene possessing 2-3 layers prepared by arc-discharge of graphite in hydrogen. FETs based on boron and nitrogen doped graphene show n-type and p-type behaviour respectively. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, ultrafast two-photon photoemission has been used to study electron solvation at a two-dimensional metal/polar adsorbate interfaces [A. Miller , Science 297, 1163 (2002)]. The electron is bound to the surface by the image interaction. Earlier we have suggested a theoretical description of the states of the electron interacting with a two-dimensional layer of the polar adsorbate [K. L. Sebastian , J. Chem. Phys. 119, 10350 (2003)]. In this paper we have analyzed the dynamics of electron solvation, assuming a trial wave function for the electron and the solvent polarization and then using the Dirac-Frenkel variational method to determine it. The electron is initially photoexcited to a delocalized state, which has a finite but large size, and causes the polar molecules to reorient. This reorientation acts back on the electron and causes its wave function to shrink, which will cause further reorientation of the polar molecules, and the process continues until the electron gets self-trapped. For reasonable values for the parameters, we are able to obtain fair agreement with the experimental observations. (c) 2005 American Institute of Physics.