128 resultados para bounded gaps
Resumo:
We consider the problem of goal seeking by robots in unknown environments. We present a frontier based algorithm for finding a route to a goal in a fully unknown environment, where information about the goal region (GR), the region where the goal is most likely to be located, is available. Our algorithm efficiently chooses the best candidate frontier cell, which is on the boundary between explored space and unexplored space, having the maximum ``goal seeking index'', to reach the goal in minimal number of moves. Modification of the algorithm is also proposed to further reduce the number of moves toward the goal. The algorithm has been tested extensively in simulation runs and results demonstrate that the algorithm effectively directs the robot to the goal and completes the search task in minimal number of moves in bounded as well as unbounded environments. The algorithm is shown to perform as well as a state of the art agent centered search algorithm RTAA*, in cluttered environments if exact location of the goal is known at the beginning of the mission and is shown to perform better in uncluttered environments.
Resumo:
Many physical problems can be modeled by scalar, first-order, nonlinear, hyperbolic, partial differential equations (PDEs). The solutions to these PDEs often contain shock and rarefaction waves, where the solution becomes discontinuous or has a discontinuous derivative. One can encounter difficulties using traditional finite difference methods to solve these equations. In this paper, we introduce a numerical method for solving first-order scalar wave equations. The method involves solving ordinary differential equations (ODEs) to advance the solution along the characteristics and to propagate the characteristics in time. Shocks are created when characteristics cross, and the shocks are then propagated by applying analytical jump conditions. New characteristics are inserted in spreading rarefaction fans. New characteristics are also inserted when values on adjacent characteristics lie on opposite sides of an inflection point of a nonconvex flux function, Solutions along characteristics are propagated using a standard fourth-order Runge-Kutta ODE solver. Shocks waves are kept perfectly sharp. In addition, shock locations and velocities are determined without analyzing smeared profiles or taking numerical derivatives. In order to test the numerical method, we study analytically a particular class of nonlinear hyperbolic PDEs, deriving closed form solutions for certain special initial data. We also find bounded, smooth, self-similar solutions using group theoretic methods. The numerical method is validated against these analytical results. In addition, we compare the errors in our method with those using the Lax-Wendroff method for both convex and nonconvex flux functions. Finally, we apply the method to solve a PDE with a convex flux function describing the development of a thin liquid film on a horizontally rotating disk and a PDE with a nonconvex flux function, arising in a problem concerning flow in an underground reservoir.
Resumo:
The Diagrammatic Valence Bond studies on the active sites of hemocyanin, consisting of two Cu(I) ions and an oxygen molecule, are performed to find out the stable geometrical pattern and electronic structure. Different parameters used in this theoretical approach are taken from existing literature on high T-c superconductors. Attempts have been made to find out the differences in electronic structure of [Cu2O2](+2) and [Cu2O2N4](+2) as it is observed that coordination of nitrogen ligand do affect electronic structure i.e. spin excitation gaps and charge and spin density distribution. A comparison of our results with earlier theoretical results are also presented.
Resumo:
We examine three hierarchies of circuit classes and show they are closed under complementation. (1) The class of languages recognized by a family of polynomial size skew circuits with width O(w), are closed under complement. (2) The class of languages recognized by family of polynomial size circuits with width O(w) and polynomial tree-size, are closed under complement. (3) The class of languages recognized by a family of polynomial size, O(log(n)) depth, bounded AND fan-in with OR fan-in f (f⩾log(n)) circuits are closed under complement. These improve upon the results of (i) Immerman (1988) and Szelepcsenyi (1988), who show that 𝒩L𝒪𝒢 is closed under complementation, and (ii) Borodin et al. (1989), who show that L𝒪𝒢𝒞ℱL is closed under complement
Resumo:
Phase relations in the pseudoternary system CaO-CoO-SiO2 have been established at 1323 K. Three quaternary oxides were found to be stable: CaCoSi2O6 with clinopyroxene (Cpx), Ca2CoSi2O7 with melilite (Mel), and CaCoSiO4 with olivine (Ol) structures. The Gibbs energies of formation of the quaternary oxides from their component binary oxides were measured using solid-state galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte in the temperature range of 1000-1324 K. The results can be summarized as follows: CoO (rs) + CaO (rs) + 2SiO(2) (Qtz) --> CaCoSi2O6 (Cpx), Delta G(f)(0) = -117920 + 11.26T (+/-150) J/mol CoO (rs) + 2CaO (rs) + 2SiO(2) (Qtz) --> Ca2CoSi2O7 (Mel), Delta G(f)(0) = -192690 + 2.38T (+/-130) J/mol CoO (rs) + CaO (rs) + SiO2 (Qtz) --> CaCoSiO2 (Ol), Delta G(f)(0) = -100325 + 2.55T (+/-100) J/mol where rs = rock salt (NaCl) structure and Qtz = quartz. The uncertainty limits correspond to twice the standard error estimate. The experimentally observed miscibility gaps along the joins CaO-CoO and CaCoSiO4-Co2SiO4 were used to calculate the excess free energies of mixing for the solid solutions CaxCo1-xO and (CayCo1-y)CoSiO4:Delta G(E) = X(1 - X)[31975X + 26736 (1 - X)] J/mol and Delta G(E) = 23100 (+/-250) Y(1 - Y) J/mol. A T-X phase diagram for the binary CaO-CoO was computed from the thermodynamic information; the diagram agrees with information available in the literature. The computed miscibility gap along the CaCoSiO4-Co2SiO4 join is associated with a critical temperature of 1389 (+/-15) K. Stability fields for the various solid solutions and the quaternary compounds are depicted on chemical-potential diagrams for SiO2, CaO, and CoO at 1323 K.
Resumo:
The spin and charge excitation gaps and charge and spin density distributions have been studied in macrocyclic binuclear aza-amido copper (II) complexes employing a model Hamiltonian. The spin gaps depend on the σ-orbital occupancies, and for small gaps, the exchange integral between the σ orbitals of the bridging oxygen atoms, KOO, which is sensitive to geometry, determines the low-lying spin excitations. The singlet—singlet gaps also depend upon the σ-orbital occupancy but are weakly dependent upon KOO.
Resumo:
in this short note, we determine precisely which operators have the property that their (full, symmetric or antisymmetric) second quantisation is an operator which is bounded or belongs to one of the various Schatten ideals; we also note that in 'the interior' of the natural domain, the second quantisation is a continuous map.
Resumo:
Let G be an undirected graph with a positive real weight on each edge. It is shown that the number of minimum-weight cycles of G is bounded above by a polynomial in the number of edges of G. A similar bound holds if we wish to count the number of cycles with weight at most a constant multiple of the minimum weight of a cycle of G.
Resumo:
The similar to 2500 km-long Himalaya plate boundary experienced three great earthquakes during the past century, but none of them generated any surface rupture. The segments between the 1905-1934 and the 1897-1950 sources, known as the central and Assam seismic gaps respectively, have long been considered holding potential for future great earthquakes. This paper addresses two issues concerning earthquakes along the Himalaya plate boundary. One, the absence of surface rupture associated with the great earthquakes, vis-a-vis the purported large slip observed from paleoseismological investigations and two, the current understanding of the status of the seismic gaps in the Central Himalaya and Assam, in view of the paleoseismological and historical data being gathered. We suggest that the ruptures of earthquakes nucleating on the basal detachment are likely to be restricted by the crustal ramps and thus generate no surface ruptures, whereas those originating on the faults within the wedges promote upward propagation of rupture and displacement, as observed during the 2005 Kashmir earthquake, that showed a peak offset of 7 m. The occasional reactivation of these thrust systems within the duplex zone may also be responsible for the observed temporal and spatial clustering of earthquakes in the Himalaya. Observations presented in this paper suggest that the last major earthquake in the Central Himalaya occurred during AD 1119-1292, rather than in 1505, as suggested in some previous studies and thus the gap in the plate boundary events is real. As for the Northwestern Himalaya, seismically generated sedimentary features identified in the 1950 source region are generally younger than AD 1400 and evidence for older events is sketchy. The 1897 Shillong earthquake is not a decollement event and its predecessor is probably similar to 1000 years old. Compared to the Central Himalaya, the Assam Gap is a corridor of low seismicity between two tectonically independent seismogenic source zones that cannot be considered as a seismic gap in the conventional sense. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Let D denote the open unit disk in C centered at 0. Let H-R(infinity) denote the set of all bounded and holomorphic functions defined in D that also satisfy f(z) = <(f <(z)over bar>)over bar> for all z is an element of D. It is shown that H-R(infinity) is a coherent ring.
Resumo:
A linear programming problem in an inequality form having a bounded solution is solved error-free using an algorithm that sorts the inequalities, removes the redundant ones, and uses the p-adic arithmetic. (C) Elsevier Science Inc., 1997
Resumo:
This paper looks at the complexity of four different incremental problems. The following are the problems considered: (1) Interval partitioning of a flow graph (2) Breadth first search (BFS) of a directed graph (3) Lexicographic depth first search (DFS) of a directed graph (4) Constructing the postorder listing of the nodes of a binary tree. The last problem arises out of the need for incrementally computing the Sethi-Ullman (SU) ordering [1] of the subtrees of a tree after it has undergone changes of a given type. These problems are among those that claimed our attention in the process of our designing algorithmic techniques for incremental code generation. BFS and DFS have certainly numerous other applications, but as far as our work is concerned, incremental code generation is the common thread linking these problems. The study of the complexity of these problems is done from two different perspectives. In [2] is given the theory of incremental relative lower bounds (IRLB). We use this theory to derive the IRLBs of the first three problems. Then we use the notion of a bounded incremental algorithm [4] to prove the unboundedness of the fourth problem with respect to the locally persistent model of computation. Possibly, the lower bound result for lexicographic DFS is the most interesting. In [5] the author considers lexicographic DFS to be a problem for which the incremental version may require the recomputation of the entire solution from scratch. In that sense, our IRLB result provides further evidence for this possibility with the proviso that the incremental DFS algorithms considered be ones that do not require too much of preprocessing.
Resumo:
A Wireless Sensor Network (WSN) powered using harvested energies is limited in its operation by instantaneous power. Since energy availability can be different across nodes in the network, network setup and collaboration is a non trivial task. At the same time, in the event of excess energy, exciting node collaboration possibilities exist; often not feasible with battery driven sensor networks. Operations such as sensing, computation, storage and communication are required to achieve the common goal for any sensor network. In this paper, we design and implement a smart application that uses a Decision Engine, and morphs itself into an energy matched application. The results are based on measurements using IRIS motes running on solar energy. We have done away with batteries; instead used low leakage super capacitors to store harvested energy. The Decision Engine utilizes two pieces of data to provide its recommendations. Firstly, a history based energy prediction model assists the engine with information about in-coming energy. The second input is the energy cost database for operations. The energy driven Decision Engine calculates the energy budgets and recommends the best possible set of operations. Under excess energy condition, the Decision Engine, promiscuously sniffs the neighborhood looking for all possible data from neighbors. This data includes neighbor's energy level and sensor data. Equipped with this data, nodes establish detailed data correlation and thus enhance collaboration such as filling up data gaps on behalf of nodes hibernating under low energy conditions. The results are encouraging. Node and network life time of the sensor nodes running the smart application is found to be significantly higher compared to the base application.
Resumo:
The tendency of granular materials in rapid shear flow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear how of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.
Resumo:
In this paper, we consider a robust design of MIMO-relay precoder and receive filter for the destination nodes in a non-regenerative multiple-input multiple-output (MIMO) relay network. The network consists of multiple source-destination node pairs assisted by a single MIMO-relay node. The source and destination nodes are single antenna nodes, whereas the MIMO-relay node has multiple transmit and multiple receive antennas. The channel state information (CSI) available at the MIMO-relay node for precoding purpose is assumed to be imperfect. We assume that the norms of errors in CSI are upper-bounded, and the MIMO-relay node knows these bounds. We consider the robust design of the MIMO-relay precoder and receive filter based on the minimization of the total MIMO-relay transmit power with constraints on the mean square error (MSE) at the destination nodes. We show that this design problem can be solved by solving an alternating sequence of minimization and worst-case analysis problems. The minimization problem is formulated as a convex optimization problem that can be solved efficiently using interior-point methods. The worst-case analysis problem can be solved analytically using an approximation for the MSEs at the destination nodes. We demonstrate the robust performance of the proposed design through simulations.