130 resultados para arindam chowdhury


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interaction between the lattice and the orbital degrees of freedom not only makes rare-earth nickelates unusually ``bad metal,'' but also introduces a temperature-driven insulator-metal phase transition. Here we investigate this insulator-metal phase transition in thin films of SmNiO3 using the slow time-dependent fluctuations (noise) in resistivity. The normalized magnitude of noise is found to be extremely large, being nearly eight orders of magnitude higher than thin films of common disordered metallic systems, and indicates electrical conduction via classical percolation in a spatially inhomogeneous medium. The higher-order statistics of the fluctuations indicate a strong non-Gaussian component of noise close to the transition, attributing the inhomogeneity to the coexistence of the metallic and insulating phases. Our experiment offers insight into the impact of lattice-orbital coupling on the microscopic mechanism of electron transport in the rare-earth nickelates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identification of viral encoded proteins that interact with RNA-dependent RNA polymerase (RdRp) is an important step towards unraveling the mechanism of replication. Sesbania mosaic virus (SeMV) RdRp was shown to interact strongly with p10 domain of polyprotein 2a and moderately with the protease domain. Mutational analysis suggested that the C-terminal disordered domain of RdRp is involved in the interaction with p10. Coexpression of full length RdRp and p10 resulted in formation of RdRp-p10 complex which showed significantly higher polymerase activity than RdRp alone. Interestingly, C Delta 43 RdRp also showed a similar increase in activity. Thus, p10 acts as a positive regulator of RdRp by interacting with the C-terminal disordered domain of RdRp. (C) 2014 The Authors. Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compute logarithmic corrections to the twisted index B-6(g) in four-dimensional N = 4 and N = 8 string theories using the framework of the Quantum Entropy Function. We find that these vanish, matching perfectly with the large-charge expansion of the corresponding microscopic expressions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The grain size of monolayer large area graphene is key to its performance. Microstructural design for the desired grain size requires a fundamental understanding of graphene nucleation and growth. The two levers that can be used to control these aspects are the defect density, whose population can be controlled by annealing, and the gas-phase supersaturation for activation of nucleation at the defect sites. We observe that defects on copper surface, namely dislocations, grain boundaries, triple points, and rolling marks, initiate nucleation of graphene. We show that among these defects dislocations are the most potent nucleation sites, as they get activated at lowest supersaturation. As an illustration, we tailor the defect density and supersaturation to change the domain size of graphene from <1 mu m(2) to >100 mu m(2). Growth data reported in the literature has been summarized on a supersaturation plot, and a regime for defect-dominated growth has been identified. In this growth regime, we demonstrate the spatial control over nucleation at intentionally introduced defects, paving the way for patterned growth of graphene. Our results provide a unified framework for understanding the role of defects in graphene nucleation and can be used as a guideline for controlled growth of graphene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors report a detailed investigation of the flicker noise (1/f noise) in graphene films obtained from chemical vapour deposition (CVD) and chemical reduction of graphene oxide. The authors find that in the case of polycrystalline graphene films grown by CVD, the grain boundaries and other structural defects are the dominant source of noise by acting as charged trap centres resulting in huge increase in noise as compared with that of exfoliated graphene. A study of the kinetics of defects in hydrazine-reduced graphene oxide (RGO) films as a function of the extent of reduction showed that for longer hydrazine treatment time strong localised crystal defects are introduced in RGO, whereas the RGO with shorter hydrazine treatment showed the presence of large number of mobile defects leading to higher noise amplitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A state-based micropolar peridynamic theory for linear elastic solids is proposed. The main motivation is to introduce additional micro-rotational degrees of freedom to each material point and thus naturally bring in the physically relevant material length scale parameters into peridynamics. Non-ordinary type modeling via constitutive correspondence is adopted here to define the micropolar peridynamic material. Along with a general three dimensional model, homogenized one dimensional Timoshenko type beam models for both the proposed micropolar and the standard non-polar peridynamic variants are derived. The efficacy of the proposed models in analyzing continua with length scale effects is established via numerical simulations of a few beam and plane-stress problems. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes p-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhancement of localized electric field near metal (plasmonic) nanostructures can have various interesting applications in sensing, imaging, photovoltage generation etc., for which significant efforts are aimed towards developing plasmonic systems with well designed and large electromagnetic response. In this paper, we discuss the wafer scale fabrication and optical characterization of a unique three dimensional plasmonic material. The near field enhancement in the visible range of the electromagnetic spectrum obtained in these structures (order of 106), is close to the fundamental limit that can be obtained in this and similar EM field enhancement schemes. The large near field enhancement has been reflected in a huge Raman signal of graphene layer in close proximity to the plasmonic system, which has been validated with FEM simulations. We have integrated graphene photodetectors with this material to obtain record photovoltage generation, with responsivity as high as A/W. As far as we know, this is the highest sensitivity obtained in any plasmonic-graphene hybrid photodetection system till date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the changing nature of the intraseasonal oscillatory (ISO) modes of Indian summer monsoon manifested by active and break phase, and their association with extreme rainfall events are necessary for probabilistic estimation of flood-related risks in a warming climate. Here, using ground-based observed rainfall, we define an index to measure the strength of monsoon ISOs and show that the relative strength of the northward-propagating low-frequency ISO (20-60 days) modes have had a significant decreasing trend during the past six decades, possibly attributed to the weakening of large-scale circulation in the region during monsoon season. This reduction is compensated by a gain in synoptic-scale (3-9 days) variability. The decrease in low-frequency ISO variability is associated with a significant decreasing trend in the percentage of extreme events during the active phase of the monsoon. However, this decrease is balanced by significant increasing trends in the percentage of extreme events in the break and transition phases. We also find a significant rise in the occurrence of extremes during early and late monsoon months, mainly over eastern coastal regions. Our study highlights the redistribution of rainfall intensity among periodic (low-frequency) and non-periodic (extreme) modes in a changing climate scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starting with a micropolar formulation, known to account for nonlocal microstructural effects at the continuum level, a generalized Langevin equation (GLE) for a particle, describing the predominant motion of a localized region through a single displacement degree of freedom, is derived. The GLE features a memory-dependent multiplicative or internal noise, which appears upon recognizing that the microrotation variables possess randomness owing to an uncertainty principle. Unlike its classical version, the present GLE qualitatively reproduces the experimentally measured fluctuations in the steady-state mean square displacement of scattering centers in a polyvinyl alcohol slab. The origin of the fluctuations is traced to nonlocal spatial interactions within the continuum, a phenomenon that is ubiquitous across a broad class of response regimes in solids and fluids. This renders the proposed GLE a potentially useful model in such cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrathin Au nanowires (similar to 2 nm diameter) are interesting from a fundamental point of view to study structure and electronic transport and also hold promise in the field of nanoelectronics, particularly for sensing applications. Device fabrication by direct growth on various substrates has been useful in demonstrating some of the potential applications. However, the realization of practical devices requires device fabrication strategies that are fast, inexpensive, and efficient. Herein, we demonstrate directed assembly of ultrathin Au nanowires over large areas across electrodes using ac dielectrophoresis with a mechanistic understanding of the process. On the basis of the voltage and frequency, the wires either align in between or across the contact pads. We exploit this assembly to produce an array of contacting wires for statistical estimation of electrical transport with important implications for future nanoelectronic/sensor applications.