115 resultados para Zinc ores


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of oxygen vacancies on the elastic properties of zinc oxide (ZnO) is examined using first-principles calculations based on density functional theory. Formation energies of vacancies in different types of oxygen deficient structures were analyzed to ascertain their stability. This analysis reveals that the doubly-charged oxygen vacancy under zinc-rich growth conditions is the most stable. Results show considerable degradation of some of the elastic moduli due to the presence of oxygen vacancies, which is in agreement with recent experiments. The decrease observed in elastic constants is more pronounced with increase in vacancy concentration. Further, the charge state of the defect structure was found to influence the shear elastic constants. Evaluation of elastic anisotropy of stoichiometric and oxygen deficient ZnO indicates the significant anisotropy in elastic properties and stiff c-axis orientation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferromagnetic resonance (FMR) measurements are employed to evaluate the presence of the two magnon scattering contribution in the magnetic relaxation processes of the epitaxial nickel zinc ferrite thin films deposited using pulsed laser deposition (PLD) on the (0 0 1) MgAl2O4 substrate. Furthermore, the reciprocal space mapping reveals the presence of microstructural defects which acts as an origin for the two magnon scattering process in this thin film. The relevance of this scattering process is further discussed for understanding the higher FMR linewidth in the in-plane configuration compared to the out-of-plane configuration. FMR measurements also reveal the presence of competing uniaxial and cubic anisotropy in the studied films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (f(FMR)) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 degrees C. The nanocrystallites were found to possess high degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of f(FMR) has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 degrees C), decomposition temperature (202 degrees C) as that with zinc acetylacetonate (136 degrees C, 220 degrees C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process. (c) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cost effective and low temperature synthesis methods namely solution combustion and hydrothermal methods were used to prepare chromium incorporated nanocrystalline zinc ferrites. The effect of incorporation of low concentration Cr3+ ions on the structural, morphological, magnetic and transport properties of the zinc ferrite compounds were investigated. The crystalline nature and size variation with chromium content were valid from powder x-ray diffraction. Particles size and crystallite size variation were valid from scanning electron microscopy and transmission electron microscopy respectively. With the increase in chromium incorporation, the crystallite and particles sizes were decreased. Fourier transform infrared spectroscopy (FTIR) studies confirmed the presence of strong metal-oxygen bonds. The elastic properties of the materials in both the methods were estimated by FTIR studies. Magnetic properties namely saturation magentization, remanent magnetization and coercivity values were decreased with increase in Cr3+ ions concentration. The dielectric properties of the samples decreased with increase in the Cr3+ ions. The dielectric constant was observed to be of the order of 10(6) at low frequency and almost 1 at higher frequency range. The activation energy estimated using Arrhenius plots was of the order of 0.182 eV and 0.368 eV respectively for the compounds prepared by solution combustion and hydrothermal methods. The emission spectra of the samples excited at 344 nm were reported using photoluminescence (PL) spectroscopy. Further, the approximate energy band gap(E-g) was estimated from PL studies. The E-g of the materials were lie in the range of 2.11-1.98 eV. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO powders/thin films/coatings when excited by a suitable excitation source, usually yield green luminescence in the visible wavelength range along with characteristic ultra-violet emission. We report yellow-red emission from ZnO nanoparticles synthesized within 5 min of microwave irradiation by using zinc acetylacetonate phenanthroline as the starting precursor material. The emission is strongly dependent on the typical structure of the starting precursor for ZnO synthesis, where one phenanthroline moiety is attached with zinc acetylacetonate hydrate complex. These ZnO nanoparticles could be potentially suitable phosphor for white light generation when excited by a blue laser. In contrast, the ZnO nanoparticles obtained from zinc acetylacetonate by similar method yield weak green emission. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt integrated zinc oxide nanorod (Co-ZnO NR) array is presented as a novel heterostructure for ultraviolet (UV) photodetector (PD). Defect states in Co-ZnO NRs surface induces an enhancement in photocurrent as compared to pristine ZnO NRs PD. Presented Co-ZnO NRs PD is highly sensitive to external magnetic field that demonstrated 185.7% enhancement in response current. It is concluded that the opposite polarizations of electron and holes in the presence of external magnetic field contribute to effective separation of electron hole pairs that have drifted upon UV illumination. Moreover, Co-ZnO NRs PD shows a faster photodetection speed (1.2 s response time and 7.4 s recovery time) as compared to the pristine ZnO NRs where the response and recovery times are observed as 38 and 195 s, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary and secondary zinc-air batteries based on ceramic, stable, one dimensional titanium carbonitride (TiCN) nanostructures are reported. The optimized titanium carbonitride composition by density functional theory reveals their good activity towards the oxygen reduction reaction (ORR). Electrochemical measurements show their superior performance for the ORR in alkaline media coupled with favourable kinetics. The nanostructured TiCN lends itself amenable to be used as an air cathode material in primary and rechargeable zinc-air batteries. The battery performance and cyclability are found to be good. Further, we have demonstrated a gel-based electrolyte for rechargeable zinc-air batteries based on a TiCN cathode under ambient, atmospheric conditions without any oxygen supply from a cylinder. The present cell can work at current densities of 10-20 mA cm(2) (app. 10 000 mA g(-1) of TiCN) for several hours (63 h in the case of 10 mA cm(-2)) with a charge retention of 98%. The low cost, noble metal-free, mechanically stable and corrosion resistant TiCN is a very good alternative to Pt for metal-air battery chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactions between Zn(NO3)(2)center dot 6H(2)O, Na2S2O3, 4,4'-bipyridine (bpy), 1,2-bis(4-pyridyl)ethene (bpe), 1,2-bis (4-pyridyl) ethane (bpa), and 1,3-bis(4-pyridyl)propane (bpp) under solvothermal conditions resulted in four new zinc thiosulfate hybrid compounds. Compound I has four-membered zinc thiosulfate rings connected by the ligand, 1,3-bis(4-pyridyl)propane (bpp) forming a two-dimensional structure. Compounds II-IV have one-dimensional zinc thiosulfate chains connected by the ligands, bpy (II), bpe (III), and bpa (IV) giving rise to three-dimensional structures. All the four-structures exhibit 3-fold interpenetration. Proton conductivity studies indicate reasonable proton mobility at 34 degrees C and at 98% relative humidity. The compounds also exhibit Lewis acid character and good photocatalytic activity for the decomposition of cationic dyes.