215 resultados para Weighted Lebesgue Space
Resumo:
In this paper we explore an implementation of a high-throughput, streaming application on REDEFINE-v2, which is an enhancement of REDEFINE. REDEFINE is a polymorphic ASIC combining the flexibility of a programmable solution with the execution speed of an ASIC. In REDEFINE Compute Elements are arranged in an 8x8 grid connected via a Network on Chip (NoC) called RECONNECT, to realize the various macrofunctional blocks of an equivalent ASIC. For a 1024-FFT we carry out an application-architecture design space exploration by examining the various characterizations of Compute Elements in terms of the size of the instruction store. We further study the impact by using application specific, vectorized FUs. By setting up different partitions of the FFT algorithm for persistent execution on REDEFINE-v2, we derive the benefits of setting up pipelined execution for higher performance. The impact of the REDEFINE-v2 micro-architecture for any arbitrary N-point FFT (N > 4096) FFT is also analyzed. We report the various algorithm-architecture tradeoffs in terms of area and execution speed with that of an ASIC implementation. In addition we compare the performance gain with respect to a GPP.
Resumo:
We analyze e(+)e(-) -> gamma gamma, e(-)gamma -> e(-)gamma and gamma gamma -> e(+)e(-) processes within the Seiberg-Witten expanded noncommutative scenario using polarized beams. With unpolarized beams the leading order effects of non commutativity starts from second order in non commutative(NC) parameter i.e. O(Theta(2)), while with polarized beams these corrections appear at first order (O(Theta')) in cross section. The corrections in Compton case can probe the magnetic component(Theta(B)) while in Pair production and Pair annihilation probe the electric component((Theta) over right arrow (E)) of NC parameter. We include the effects of earth rotation in our analysis. This study is done by investigating the effects of non commutativity on different time averaged cross section observables. The results which also depends on the position of the collider, can provide clear and distinct signatures of the model testable at the International Linear Collider(ILC).
Resumo:
Distributed space time coding for wireless relay networks where the source, the destination and the relays have multiple antennas have been studied by Jing and Hassibi. In this set up, the transmit and the receive signals at different antennas of the same relay are processed and designed independently, even though the antennas are colocated. In this paper, a wireless relay network with single antenna at the source and the destination and two antennas at each of the R relays is considered. In the first phase of the two-phase transmission model, a T -length complex vector is transmitted from the source to all the relays. At each relay, the inphase and quadrature component vectors of the received complex vectors at the two antennas are interleaved before processing them. After processing, in the second phase, a T x 2R matrix codeword is transmitted to the destination. The collection of all such codewords is called Co-ordinate interleaved distributed space-time code (CIDSTC). Compared to the scheme proposed by Jing-Hassibi, for T ges AR, it is shown that while both the schemes give the same asymptotic diversity gain, the CIDSTC scheme gives additional asymptotic coding gain as well and that too at the cost of negligible increase in the processing complexity at the relays.
Resumo:
A construction of a new family of distributed space time codes (DSTCs) having full diversity and low Maximum Likelihood (ML) decoding complexity is provided for the two phase based cooperative diversity protocols of Jing-Hassibi and the recently proposed Generalized Non-orthogonal Amplify and Forward (GNAF) protocol of Rajan et al. The salient feature of the proposed DSTCs is that they satisfy the extra constraints imposed by the protocols and are also four-group ML decodable which leads to significant reduction in ML decoding complexity compared to all existing DSTC constructions. Moreover these codes have uniform distribution of power among the relays as well as in time. Also, simulations results indicate that these codes perform better in comparison with the only known DSTC with the same rate and decoding complexity, namely the Coordinate Interleaved Orthogonal Design (CIOD). Furthermore, they perform very close to DSTCs from field extensions which have same rate but higher decoding complexity.
Resumo:
Pricing is an effective tool to control congestion and achieve quality of service (QoS) provisioning for multiple differentiated levels of service. In this paper, we consider the problem of pricing for congestion control in the case of a network of nodes under a single service class and multiple queues, and present a multi-layered pricing scheme. We propose an algorithm for finding the optimal state dependent price levels for individual queues, at each node. The pricing policy used depends on a weighted average queue length at each node. This helps in reducing frequent price variations and is in the spirit of the random early detection (RED) mechanism used in TCP/IP networks. We observe in our numerical results a considerable improvement in performance using our scheme over that of a recently proposed related scheme in terms of both throughput and delay performance. In particular, our approach exhibits a throughput improvement in the range of 34 to 69 percent in all cases studied (over all routes) over the above scheme.
Resumo:
Abstract. Let G = (V,E) be a weighted undirected graph, with non-negative edge weights. We consider the problem of efficiently computing approximate distances between all pairs of vertices in G. While many efficient algorithms are known for this problem in unweighted graphs, not many results are known for this problem in weighted graphs. Zwick [14] showed that for any fixed ε> 0, stretch 1 1 + ε distances between all pairs of vertices in a weighted directed graph on n vertices can be computed in Õ(n ω) time, where ω < 2.376 is the exponent of matrix multiplication and n is the number of vertices. It is known that finding distances of stretch less than 2 between all pairs of vertices in G is at least as hard as Boolean matrix multiplication of two n×n matrices. It is also known that all-pairs stretch 3 distances can be computed in Õ(n 2) time and all-pairs stretch 7/3 distances can be computed in Õ(n 7/3) time. Here we consider efficient algorithms for the problem of computing all-pairs stretch (2+ε) distances in G, for any 0 < ε < 1. We show that all pairs stretch (2 + ε) distances for any fixed ε> 0 in G can be computed in expected time O(n 9/4 logn). This algorithm uses a fast rectangular matrix multiplication subroutine. We also present a combinatorial algorithm (that is, it does not use fast matrix multiplication) with expected running time O(n 9/4) for computing all-pairs stretch 5/2 distances in G. 1