207 resultados para Wear resistance
Resumo:
We have derived explicitly, the large scale distribution of quantum Ohmic resistance of a disordered one-dimensional conductor. We show that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder we recover single parameter scaling, consistent with existing theoretical treatments.
Resumo:
The electrical resistance of the binary liquid system cyclohexane + acetic anhydride is measured, in the critical region, both in the pure mixture and when the mixture is doped with small amounts (≈ 100 ppm) of H2O/D2O impurities.T c was approached to aboutt=3×10−6 wheret=(T −T c )/T c . The critical exponentb ≈ 0.35 in the fit of the resistance data to the equationdR/dT ∼t −b does not seem to be affected appreciably by the impurities. There is a sign reversal ofdR/dt in the non-critical region. Binary liquid systems seem to violate the universality of the critical resistivity.
Resumo:
A study of the correlations between material properties and normalized erosion resistance (inverse of erosion rates) of various materials tested in the rotating disk and the flow venturi at various intensities indicates that different individual properties influence different stages of erosion. At high and low intensities of erosion, energy properties predominate the phenomenon, whereas at intermediate intensities strength and acoustic properties become more significant. However, both strength and energy properties are significant in the correlations for the entire spectrum of erosion when extensive cavitation and liquid impingement data from several laboratories involving different intensities and hydrodynamic conditions are considered. The use of true material properties improved the statistical parameters by 3 to 37%, depending on the intensity of erosion. It is possible to evaluate qualitatively the erosion resistances of materials based on the true stress-true strain curves.
Resumo:
The electrical resistance is measured in two binary liquid systems CS2 + CH3NO2 and n-C7H16 + CH3OH in the critical region as a function of frequency from 10 Hz to 100 kHz. The critical exponent b ≈ 0.35 in the singularity of dR/dT α (T - Tc)−b near Tc has no appreciable dependence upon the frequency. Thus any contribution from dielectric dispersion to the critical resistivity is not appreciable. The universal behaviour of the dR/dT anomaly does not seem to be followed in binary liquid systems.
Resumo:
Several methods for improving the strength of metallic materials are available and correlations between strength and various microstructural features have been established. The purpose of this paper is to review parallel developments favouring improved fracture resistance. Resistance to fracture in monotonie loading, cyclic loading and when fracture is environment-aided have been considered in steels, aluminium alloys and anisotropic materials. Finally, the question of optimising alloy behaviour is discussed.
Resumo:
Marked ball grinding tests were carried out in the laboratory with a lead-zinc sulphide ore under different experimental conditions using high carbon low alloy steel (cast and forged) and high chrome cast iron balls. Relative ball wear as a function of grinding period and milling conditions was evaluated for the different types of ball materials. The role of corrosion and abrasion-erosion in the wear of grinding media is brought out. Methods to minimise ball wear through control of mill atmosphere and addition of reagents are discussed.
Resumo:
Three distinct mechanisms — sliding, bonding and bearing — for the mobilisation of interfacial friction have been identified. In the light of these mechanisms, the effect of variation in reinforcement parameters, such as extensibility, flexibility and hardness on mobilisation of interfacial friction, and the mechanisms themselves has been examined. The influence of boundary effects of apparatus on the interfacial friction has been discussed and a method of estimating the same in a pull-out box has been proposed.
Resumo:
The higher levels of cytochrone P-450 dependent enzyme activities reported earlier are traced to higher levels of cytochrome P-450 (CYPIIB1/B2 like) messenger RNA in the chloroquine resistant than the sensitive strains. The messenger RNA is also induced by phenobarbitone in the sensitive strain. Pretreatment with phenobarbitone affords partial protection to chloroquine toxicity in the sensitive strain and this is not due to a differential accumulation of the drug.
Resumo:
This paper describes the electrical contact resistance (ECR) measurements made on thin gold plated (gold plating of <= 0.5 mu m with a Ni underlayer of similar to 2 mu m) oxygen free high conductivity (OFHC) Cu contacts in vacuum environment. ECR in gold plated OFHC Cu contacts is found to be slightly higher than that in bare OFHC Cu contacts. Even though gold is a softer material than copper, the relatively high ECR values observed in gold plated contacts are mainly due to the higher hardness and electrical resistivity of the underlying Ni layer. It is well known that ECR is directly related to plating factor, which increases with increasing coating thickness when the electrical resistivity of coating material is more than that of substrate. Surprisingly, in the present case it is found that the ECR decreases with increasing gold layer thickness on OFHC Cu substrate (gold has higher electrical resistivity than OFHC Cu). It is analytically demonstrated from the topography and microhardness measurements results that this peculiar behavior is associated with thin gold platings, where the changes in surface roughness and microhardness with increasing layer thickness overshadow the effect of plating factor on ECR.
Resumo:
Erosion characteristics of high chromium (Cr, 16-19%) alloy cast iron with 5% and 10% manganese (Mn) prepared in metal and sand moulds through induction melting are investigated using jet erosion test setup in both as-cast and heat-treated conditions. The samples were characterised for hardness and microstructural properties. A new and novel non-destructive evaluation technique namely positron lifetime spectroscopy has also been used for the first time to characterise the microstructure of the material in terms of defects and their concentration. We found that the hardness decreases irrespective of the sample condition when the mould type is changed from metal to sand, On the other hand, the erosion volume loss shows an increasing trend. Since the macroscopic properties have a bearing on the microstructure, good credence is obtained from the microstructural features as seen from light and scanning electron micrographs. Faster cooling in the metal mould yielded fine carbide precipitation on the surface. The defect size and their concentration derived from positron method are higher for sand mould compared to metal mould. Lower erosion loss corresponds to smaller size defects in metal mould are the results of quicker heat transfer in the metal mould compared to the sand mould. Heat treatment effects are clearly seen as the reduced concentration of defects and spherodisation of carbides points to this. The erosion loss with respect to the defects size and concentration correlate very well.