108 resultados para Visualisation de motifs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complex formation of alkyl ammonium salts by water-soluble carboxylatopillar5] arene (CP5A) in aqueous medium is reported. p-Xylene diammonium salt and a series of secondary alkyl ammonium salts with various alkyl groups have been prepared and investigated for complex formation. All the ammonium salts exhibit strong host-guest complexation with CP5A under neutral aqueous conditions. H-1 NMR, H-1 DOSY and 2D NOESY NMR experiments have been performed to characterize these inclusion complexes. In this study, the hydrophobic and electrostatic interactions govern the complex formation leading to the formation of pseudorotaxane species. Five pseudo2] rotaxanes and one pseudo3] rotaxane were obtained whose association constant values and stoichiometry were evaluated by an NMR titration method. The results indicate the use of ammonium salts as new complimentary synthons for CP5A in aqueous medium, adding to the repertoire of existing recognition motifs such as paraquat and 1,4-bis(pyridinium) derivatives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uracil DNA glycosylases (UDGs) are an important group of DNA repair enzymes, which pioneer the base excision repair pathway by recognizing and excising uracil from DNA. Based on two short conserved sequences (motifs A and B), UDGs have been classified into six families. Here we report a novel UDG, UdgX, from Mycobacterium smegmatis and other organisms. UdgX specifically recognizes uracil in DNA, forms a tight complex stable to sodium dodecyl sulphate, 2-mercaptoethanol, urea and heat treatment, and shows no detectable uracil excision. UdgX shares highest homology to family 4 UDGs possessing Fe-S cluster. UdgX possesses a conserved sequence, KRRIH, which forms a flexible loop playing an important role in its activity. Mutations of H in the KRRIH sequence to S, G, A or Q lead to gain of uracil excision activity in MsmUdgX, establishing it as a novel member of the UDG superfamily. Our observations suggest that UdgX marks the uracil-DNA for its repair by a RecA dependent process. Finally, we observed that the tight binding activity of UdgX is useful in detecting uracils in the genomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Helicobacter pylori MutS2 (HpMutS2), an inhibitor of recombination during transformation is a non-specific nuclease with two catalytic sites, both of which are essential for its anti-recombinase activity. Although HpMutS2 belongs to a highly conserved family of ABC transporter ATPases, the role of its ATP binding and hydrolysis activities remains elusive. Results: To explore the putative role of ATP binding and hydrolysis activities of HpMutS2 we specifically generated point mutations in the nucleotide-binding Walker-A (HpMutS2-G338R) and hydrolysis Walker-B (HpMutS2-E413A) domains of the protein. Compared to wild-type protein, HpMutS2-G338R exhibited similar to 2.5-fold lower affinity for both ATP and ADP while ATP hydrolysis was reduced by similar to 3-fold. Nucleotide binding efficiencies of HpMutS2-E413A were not significantly altered; however the ATP hydrolysis was reduced by similar to 10-fold. Although mutations in the Walker-A and Walker-B motifs of HpMutS2 only partially reduced its ability to bind and hydrolyze ATP, we demonstrate that these mutants not only exhibited alterations in the conformation, DNA binding and nuclease activities of the protein but failed to complement the hyper-recombinant phenotype displayed by mutS2-disrupted strain of H. pylori. In addition, we show that the nucleotide cofactor modulates the conformation, DNA binding and nuclease activities of HpMutS2. Conclusions: These data describe a strong crosstalk between the ATPase, DNA binding, and nuclease activities of HpMutS2. Furthermore these data show that both, ATP binding and hydrolysis activities of HpMutS2 are essential for the in vivo anti-recombinase function of the protein.