112 resultados para Triangular finite element


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A finite element analysis of laminated shells reinforced with laminated stiffeners is described in this paper. A rectangular laminated anisotropic shallow thin shell finite element of 48 d.o.f. is used in conjunction with a laminated anisotropic curved beam and shell stiffening finite element having 16 d.o.f. Compatibility between the shell and the stiffener is maintained all along their junction line. Some problems of symmetrically stiff ened isotropic plates and shells have been solved to evaluate the performance of the present method. Behaviour of an eccentrically stiffened laminated cantilever cylindrical shell has been predicted to show the ability of the present program. General shells amenable to rectangular meshes can also be solved in a similar manner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A finite element analysis of laminated shells reinforced with laminated stiffeners is described in this paper. A rectangular laminated anisotropic shallow thin shell finite element of 48 d.o.f. is used in conjunction with a laminated anisotropic curved beam and shell stiffening finite element having 16 d.o.f. Compatibility between the shell and the stiffener is maintained all along their junction line. Some problems of symmetrically stiffened isotropic plates and shells have been solved to evaluate the performance of the present method. Behaviour of an eccentrically stiffened laminated cantilever cylindrical shell has been predicted to show the ability of the present program. General shells amenable to rectangular meshes can also be solved in a similar manner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is shown that in the finite-element formulation of the general quasi-harmonic equation using tetrahedral elements, for every member of the element family there exists just one numerical universal matrix indpendent of the size, shape and material properties of the element. Thus the element matrix is conveniently constructed by manipulating this single matrix along with a set of reverse sequence codes at the same time accounting for the size, shape and material properties in a simple manner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work deals with the formulation and implementation of finite deformation viscoplasticity within the framework of stress-based hybrid finite element methods. Hybrid elements, which are based on a two-field variational formulation, are much less susceptible to locking than conventional displacement-based elements. The conventional return-mapping scheme cannot be used in the context of hybrid stress methods since the stress is known, and the strain and the internal plastic variables have to be recovered using this known stress field.We discuss the formulation and implementation of the consistent tangent tensor, and the return-mapping algorithm within the context of the hybrid method. We demonstrate the efficacy of the algorithm on a wide range of problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new spectral finite element formulation is presented for modeling the sloshing and the acoustic waves in nearly incompressible fluids. The formulation makes use of the Legendre polynomials in deriving the finite element interpolation shape functions in the Lagrangian frame of reference. The formulated element uses Gauss-Lobatto-Legendre quadrature scheme for integrating the volumetric stiffness and the mass matrices while the conventional Gauss-Legendre quadrature scheme is used on the rotational stiffness matrix to completely eliminate the zero energy modes, which are normally associated with the Lagrangian FE formulation. The numerical performance of the spectral element formulated here is examined by doing the inf-sup test oil a standard rectangular rigid tank partially filled with liquid The eigenvalues obtained from the formulated spectral element are compared with the conventional equally spaced node locations of the h-type Lagrangian finite element and the predicted results show that these spectral elements are more accurate and give superior convergence The efficiency and robustness of the formulated elements are demonstrated by solving few standard problems involving free vibration and dynamic response analysis with undistorted and distorted spectral elements. and the obtained results are compared with available results in the published literature (C) 2009 Elsevier Inc All rights reserved

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Today finite element method is a well established tool in engineering analysis and design. Though there axe many two and three dimensional finite elements available, it is rare that a single element performs satisfactorily in majority of practical problems. The present work deals with the development of 4-node quadrilateral element using extended Lagrange interpolation functions. The classical univariate Lagrange interpolation is well developed for 1-D and is used for obtaining shape functions. We propose a new approach to extend the Lagrange interpolation to several variables. When variables axe more than one the method also gives the set of feasible bubble functions. We use the two to generate shape function for the 4-node arbitrary quadrilateral. It will require the incorporation of the condition of rigid body motion, constant strain and Navier equation by imposing necessary constraints. The procedure obviates the need for isoparametric transformation since interpolation functions are generated for arbitrary quadrilateral shapes. While generating the element stiffness matrix, integration can be carried out to the accuracy desired by dividing the quadrilateral into triangles. To validate the performance of the element which we call EXLQUAD4, we conduct several pathological tests available in the literature. EXLQUAD4 predicts both stresses and displacements accurately at every point in the element in all the constant stress fields. In tests involving higher order stress fields the element is assured to converge in the limit of discretisation. A method thus becomes available to generate shape functions directly for arbitrary quadrilateral. The method is applicable also for hexahedra. The approach should find use for development of finite elements for use with other field equations also.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, elastic wave propagation is studied in a nanocomposite reinforced with multiwall carbon nanotubes (CNTs). Analysis is performed on a representative volume element of square cross section. The frequency content of the exciting signal is at the terahertz level. Here, the composite is modeled as a higher order shear deformable beam using layerwise theory, to account for partial shear stress transfer between the CNTs and the matrix. The walls of the multiwall CNTs are considered to be connected throughout their length by distributed springs, whose stiffness is governed by the van der Waals force acting between the walls of nanotubes. The analyses in both the frequency and time domains are done using the wavelet-based spectral finite element method (WSFEM). The method uses the Daubechies wavelet basis approximation in time to reduce the governing PDE to a set of ODEs. These transformed ODEs are solved using a finite element (FE) technique by deriving an exact interpolating function in the transformed domain to obtain the exact dynamic stiffness matrix. Numerical analyses are performed to study the spectrum and dispersion relations for different matrix materials and also for different beam models. The effects of partial shear stress transfer between CNTs and matrix on the frequency response function (FRF) and the time response due to broadband impulse loading are investigated for different matrix materials. The simultaneous existence of four coupled propagating modes in a double-walled CNT-composite is also captured using modulated sinusoidal excitation.