109 resultados para Tensile Properties
Resumo:
We demonstrate the aptitude of supramolecular hydrogel formation using simple bile acid such as lithocholic acid in aqueous solution in the presence of various dimeric or oligomeric amines. By variation of the choice of the amines in such mixtures the gelation properties could be modulated. However, the replacement of lithocholic acid (LCA) by cholic acid or deoxycholic acid resulted in no hydrogel formation. FT-IR studies confirm that the carboxylate and ammonium residues of the two components are involved in the salt (ion-pair) formation. This promotes further assembly of the components reinforced by a continuous hydrogen bonded network leading to gelation. Electron microscopy shows the morphology of the internal organization of gels of two component systems which also depends significantly on the amine part. Variation of the amine component from the simple 1,2-ethanediamine (EDA) to oligomeric amines in such gels of lithocholic acid changes the morphology of the assembly from long one-dimensional nanotubes to three-dimensional complex structures. Single crystal X-ray diffraction analysis with one of the amine-LCA complexes suggested the motif of fiber formation where the amines interact with the carboxylate and hydroxyl moieties through electrostatic forces and hydrogen bonding. From small angle neutron scattering study, it becomes clear that the weak gel from LCA-EDA shows scattering oscillation due to the presence of non-interacting nanotubules while for gels of LCA with oligomeric amines the individual fibers come together to form complex three-dimensional organizations of higher length scale. The rheological properties of this class of two component system provide clear evidence that the flow behavior can be modulated varying the acid-amine ratio.
Resumo:
Copper aluminum oxide films were prepared by direct current (dc) reactive magnetron sputtering under various substrate temperatures in the range of 303–648 K and systematically studied their physical properties. The physical properties of the films were strongly affected by the substrate temperature. The films formed at substrate temperatures <373 K were amorphous while those deposited at higher substrate temperatures (≥373 K) were polycrystalline in nature. The electrical properties of the films enhanced with substrate temperature due to the improved crystallinity. The Hall mobility of 9.4 cm2/V s and carrier concentration of 3.5 × 1017 cm−3 were obtained at the substrate temperature of 573 K. The optical band gap of the films decreased from 3.87 to 3.46 eV with the increase of substrate temperature from 373 to 573 K.
Resumo:
ZrMo2O8 was synthesized via two routes, namely, the traditional solid-state method and the solution combustion method. The compounds were characterized by powder X-ray diffraction, UV−visible spectroscopy, scanning electron microscopy, and transmission electron microscopy. The crystals belong to a trigonal crystal system, space group P 1c (No. 163) with a = 10.1391(6) Å, c = 11.7084(8) Å, and Z = 6. The band gap of the compounds was around 2.7 eV, and DFT calculations suggest the indirect nature of the band gap. The irregular MoO4 tetrahedra create a dipole and inhibit the process of electron−hole recombination, thereby making the material photoactive. The photocatalytic activity of the compounds prepared by both routes has been investigated for the degradation of various dyes under UV irradiation, and this showed the specificity of the compounds towards the degradation of non-anthraquinonic dyes.
Resumo:
24-norursodeoxycholic acid (norUDCA), a side chain-modified ursodeoxycholic acid derivative, has dramatic therapeutic effects in experimental cholestasis and may be a promising agent for the treatment of cholestatic liver diseases. We aimed to better understand the physiologic and therapeutic properties of norUDCA and to test if they are related to its side chain length and/or relative resistance to amidation. For this purpose, Mdr2-/- mice, a model for sclerosing cholangitis, received either a standard diet or a norUDCA-, tauro norursodeoxycholic acid (tauro- norUDCA)-, or di norursodeoxycholic acid (di norUDCA)-enriched diet. Bile composition, serum biochemistry, liver histology, fibrosis, and expression of key detoxification and transport systems were investigated. Direct choleretic effects were addressed in isolated bile duct units. The role of Cftr for norUDCA-induced choleresis was explored in Cftr-/- mice. norUDCA had pharmacologic features that were not shared by its derivatives, including the increase in hepatic and serum bile acid levels and a strong stimulation of biliary HCO3- -output. norUDCA directly stimulated fluid secretion in isolated bile duct units in a HCO3- -dependent fashion to a higher extent than the other bile acids. Notably, the norUDCA significantly stimulated HCO 3- -output also in Cftr-/- mice. In Mdr2-/- mice, cholangitis and fibrosis strongly improved with norUDCA, remained unchanged with tauro- norUDCA, and worsened with di norUDCA. Expression of Mrp4, Cyp2b10, and Sult2a1 was increased by norUDCA and di norUDCA, but was unaffected by tauro- norUDCA. Conclusion:The relative resistance of norUDCA to amidation may explain its unique physiologic and pharmacologic properties. These include the ability to undergo cholehepatic shunting and to directly stimulate cholangiocyte secretion, both resulting in a HCO3- -rich hypercholeresis that protects the liver from cholestatic injury.