314 resultados para TECHNIQUES: SPECTROSCOPIC
Resumo:
A photoemission study of superconducting Nd1.85Ce0.15CuO4-δ shows that Ce in the cuprate is essentially in the 4+ state. While the electron donated by Ce does not appear to affect the Cu 3d band, we still find evidence for the presence of considerable Cu1+ - related configurations due to covalency effects. A role for oxygen holes and Cu1+ species is indicated just as in other cuprate superconductors.
Resumo:
He i spectra of strong n–v type adducts of BF3 with H2O, CH3OH, (C2H5)2O, and CH3CN as well as of weak complexes of BF3 with NO and H2S are reported along with assignments based on MO calculations. The energy of the fluorine orbitals of BF3 is shown to be shifted in proportion to the strength of the donor–acceptor interaction. BF3 seems to form a contact pair with CS2.
Resumo:
Genistein and daidzein, the major isoflavones present in soybeans, possess a wide spectrum of physiological and pharmacological functions. The binding of genistein to human serum albumin (HSA) has been investigated by equilibrium dialysis, fluorescence measurements, CD and molecular visualization. One mole of genistein is bound per mole of HSA with a binding constant of 1.5 +/- 0.2 X 10(5) m(-1). Binding of genistein to HSA precludes the attachment of daidzein. The ability of HSA to bind genistein is found to be lost when the tryptophan residue of albumin is modified with N-bromosuccinimide. At 27 degrees C (pH 7.4), van't Hoff's enthalpy, entropy and free energy changes that accompany the binding are found to be -13.16 kcal.mol(-1), -21 cal.mol(-1)K(-1) and -6.86 kcal.mol(-1), respectively. Temperature and ionic strength dependence and competitive binding measurements of genistein with HSA in the presence of fatty acids and 8-anilino-1-naphthalene sulfonic acid have suggested the involvement of both hydrophobic and ionic interactions in the genistein-HSA binding. Binding measurements of genistein with BSA and HSA, and those in the presence of warfarin and 2,3,5-tri-iodobenzoic acid and Forster energy transfer measurements have been used for deducing the binding pocket on HSA. Fluorescence anisotropy measurements of daidzein bound and then displaced with warfarin, 2,3,5-tri-iodobenzoic acid or diazepam confirm the binding of daidzein and genistein to subdomain IIA of HSA. The ability of HSA to form ternery complexes with other neutral molecules such as warfarin, which also binds within the subdomain IIA pocket, increases our understanding of the binding dynamics of exogenous drugs to HSA.
Resumo:
This article describes two-component charge-transfer interaction mediated organogels (CT-gels) derived from anthracene carboxamides obtained from 2-amino 2-hydroxymethyl-1,3-propanediol (TRIS), and 2,3-dialkoxyanthracenes as donors, with 2,4,7-trinitrofluorenone (TNF) as the common acceptor. We demonstrate the versatility of TNF as an electron acceptor in the formation of these gels. The effect of subtle changes in the donor structure on the gelation ability has been investigated by varying the alkyl chain length in the dialkoxyanthracene donors, and by varying the position of the TRIS substituent in the anthracene carboxamide donors. Distinct differences have been observed in the nature of the CT-gels based on these two kinds of anthracene donors. It has been reported in the literature that 2,3-dialkoxyanthracenes form gels on their own in various aliphatic hydrocarbons and alcohols for linear alkyl chains bearing at least 6mcarbon atoms (C-6). In the present study, it is shown that themCT-complex of these molecules with TNF is able to gel many alcoholic and a few hydrocarbon solvents. Also, in the presence of TNF, the 2,3-dialkoxyanthracenes (C-4-C-5) which were non-gelators on their own at ambient temperatures, form CT-gels in a number of alcohols. The other series of gelators discussed, the anthracene carboxamides, require the mandatory presence of TNF to form gels. This donor-acceptor complex forms gels in various aliphatic alcohols. Interestingly, the formation of these CT-gels requires rapid cooling in most of the cases. Thermal stability studies with both types of CT-gels indicate an optimum stoichiometry of 1 : 1 between the donor and the acceptor. Dynamic rheological experiments reveal these gels as viscoelastic soft materials, with the mechanical strength of these gels depending on the amount of TNF present. This provides a means to tune the strength of the gel by varying the doping concentration of the acceptor.
Resumo:
A thermodynamic study of the Ti-O system at 1573 K has been conducted using a combination of thermogravimetric and emf techniques. The results indicate that the variation of oxygen potential with the nonstoichiometric parameter delta in stability domain of TiO2-delta with rutile structure can be represented by the relation, Delta mu o(2) = -6RT In delta - 711970(+/-1600) J/mol. The corresponding relation between non-stoichiometric parameter delta and partial pressure of oxygen across the whole stability range of TiO2-delta at 1573 K is delta proportional to P-O2(-1/6). It is therefore evident that the oxygen deficient behavior of nonstoichiometric TiO2-delta is dominated by the presence of doubly charged oxygen vacancies and free electrons. The high-precision measurements enabled the resolution of oxygen potential steps corresponding to the different Magneli phases (Ti-n O2n-1) up to n = 15. Beyond this value of n, the oxygen potential steps were too small to be resolved. Based on composition of the Magneli phase in equilibrium with TiO2-delta, the maximum value of n is estimated to be 28. The chemical potential of titanium was derived as a function of composition using the Gibbs-Duhem relation. Gibbs energies of formation of the Magneli phases were derived from the chemical potentials of oxygen and titanium. The values of -2441.8(+/-5.8) kJ/mol for Ti4O7 and -1775.4(+/-4.3) kJ/mol for Ti3O5 Obtained in this study refine values of -2436.2(+/-26.1) kJ/mol and-1771.3(+/-6.9) kJ/mol, respectively, given in the JANAF thermochemical tables.
Resumo:
Fluorescence and stopped-flow spectrophotometric studies on three plant lectins fromPsophocarpus tetragonolobus (winged bean),Glycine max (soybean) andArtocarpus integrifolia (jack fruit) have been studied usingN-dansylgalactosamine as a fluorescent ligand. The best monosaccharide for the winged bean agglutinin I (WBA I) and soybean (SBA) is Me-agrGalNAc and for jack fruit agglutinin (JFA) is Me-agrGal. Examination of the percentage enhancement and association constants (1.51×106, 6.56×106 and 4.17×105 M–1 for SBA, WBA I and JFA, respectively) suggests that the combining regions of the lectins SBA and WBA I are apolar whereas that of JFA is polar. Thermodynamic parameters obtained for the binding of several monosaccharides to these lectins are enthalpically favourable. The binding of monosaccharides to these lectins suggests that the-OH groups at C-1, C-2, C-4 and C-6 in thed-galactose configuration are important loci for interaction with these lectins. An important finding is that the JFA binds specifically to Galß1-3GaINAc with much higher affinity than the other disaccharides which are structurally and topographically similar.The results of stopped-flow spectrometry on the binding ofN-dansylgalactosamine to these lectins are consistent with a bimolecular single step mechanism. The association rate constants (2.4×105, 1.3×104, and 11.7×105 M–1 sec–1 for SBA, WBA I and JFA, respectively) obtained are several orders of magnitude slower than the ones expected for diffusion controlled reactions. The dissociation rate constants (0.2, 3.2×10–2, 83.3 sec–1 for SBA, WBA I and JFA, respectively) obtained for the dissociation ofN-dansylgalactosamine from its lectin complex are slowest for SBA and WBA I when compared with any other lectin-ligand dissociation process.
Resumo:
The ir-spectra in the N-H stretching region of Piv-Pro-NHMe and Boc-Pro-NHMe have been studied in carbon tetrachloride and chloroform solutions over a wide range of concentrations. Based on the concentration dependence of the N-H stretching bands, it has been shown that the characteristic N-H stretching band due to the C7 intramolecular hydrogen bond is around 3335 cm-'. Intermolecular hydrogen bonding also occurs to a small extent in these peptides, giving rise to a slight concentration dependence of the N-H stretching bands. The band around 3335 cm-* need not necessarily be due to C7 hydrogen bonds alone as proposed by Tsuboi et al. or to intermolecular hydrogen bonding alone as proposed by Maxfield et al.; this conclusion is supported by studies on Boc-Leu-NHMe, which undergoes only intermolecular hydrogen bonding We have shown that 2-Aib-Aib-OMe and Z-Aib- Ala-OMe form C7 intramolecular hydrogen bonds in addition to C5 intramolecular hydrogen bonds. The present studies also show that all the peptides studied exist in more than one conformation in solution.
N-H center dot center dot center dot F hydrogen bonds in fluorinated benzanilides: NMR and DFT study
Resumo:
Using F-19 and H-1-NMR (with N-14 decoupling) spectroscopic techniques together with density functional theoretical (DFT) calculations, we have investigated weak molecular interactions in isomeric fluorinated benzanilides. Simultaneous presence of through space nuclear spin-spin couplings ((1h)J(N-H center dot center dot center dot F)) of diverse strengths and feeble structural fluctuations are detected as a function of site specific substitution of fluorine atoms within the basic identical molecular framework. The transfer of hydrogen bonding interaction energies through space is established by perturbing their strengths and monitoring the effect on NMR parameters. Multiple quantum (MQ) excitation, up to the highest possible MQ orders of coupled protons, is utilized as a tool for accurate H-1 assignments. Results of NMR studies and DFT calculations are compared with the relevant structural parameters taken from single crystal X-ray diffraction studies.
Resumo:
This Article addresses the formation of chiral supramolecular structures in the organogels derived from chiral organogelator 1R (or 2R), and its mixtures with its enantiomer (1S) and achiral analogue 3 by extensive circular dichroism (CD) spectroscopic measurements. Morphological analysis by atomic force microscopy (AFM) and scanning electron microscopy (SEM) were complemented by the measurements of their bulk properties by thermal stability and rheological studies. Specific molecular recognition events (1/3 vs 2/3) and solvent effects (isooctane vs dodecane) were found to be critical in the formation of chiral aggregates. Theoretical studies were also carried out to understand the interactions responsible for the formation of the superstructures.
Resumo:
The flocculation and filtration characteristics of typical Indian iron ore fines have been studied using starch as flocculant in the presence of an inorganic electrolyte, namely calcium chloride. The effect of various parameters such as pH, starch and calcium chloride concentrations and pulp density on the settling and filtration rates, turbidity of the supernatant and on residual starch and calcium ion concentrates has been investigated through a statistical design and analysis approach and subsequently optimised on a laboratory scale. The adsorption mechanisms of starch onto haematite have been elucidated through adsorption density measurements, infrared and X-ray photoelectron spectroscopic techniques. The rheological property of the polymer solutions of relevance to flocculations has also been investigated. Further, the role of metal ion-starch interactions in the bulk solution, has been studied. In order to understand the nature of polymer adsorption at the double-layer, electrokinetic studies have been carried out with the iron ore mineral samples using starch and calcium chloride. Based on the above findings, selective floculaation tests on artificial mixtures of iron ore minerals have been carried out to determine the separation efficiencies from the view point of alumina and silica removal from haematite as well as the control of alumina: silica ratio in Indian iron ores.