170 resultados para Synthetic products
Resumo:
A four step, efficient and general methodology for the conversion of a cyclic ketone into the corresponding alpha-spiro-beta-methylene-gamma-butyrolactone, the key structural feature present in tricyclic sesquiterpenes bakkanes, has been developed employing a regiospecific 5-exo dig radical cyclisation reaction as the key step. The methodology has been extended to the total synthesis of bakkanes including homogynolide-B and chiral homogynolide-A.
Resumo:
In order to gain access to the heptacyclic tetraone 3, efforts were directed towards the utilisation of the major 'unwanted' [4 + 2]-adduct 11 of tetrachlorodimethoxycyclopentadiene and norbornenobenzoquinone. Epoxides derived from the diol and dimethoxy derivatives of the adduct 11 undergo facile Wagner-Meerwein rearrangement resulting in the required endo, syn, endo stereochemistry as well as methano-bridge functionalisation to deliver 18 and 24, respectively. However, intramolecular ether formation, occurring via the capture of carbocation intermediate with the transannularly poised oxygen functionality, is a more facile process. Attempts to cleave the ether linkage resulted in the formation of a novel transannularly cyclised twisted bowl shape heptacyclic compound 30 and its structure has been established through X-ray crystallography.
Resumo:
Co-ordination complexes of the diphosphazane dioxides Ph(2)P(O)N(Pr-i)P(O)Ph(2) L(1). Ph(2)P(O)N(Pr-i)P(O)Ph(OC(6)H(4)Me-4) L(2) and Ph(2)P(O)N(Pr-i)P(O)(O2C12H8) L(3) with UO22+ or Th4+ ions have been synthesised and characterised by IR and NMR spectroscopy. The structures of [UO2(NO3)(2)L(1)] and [Th(NO3)(2)L(3)(1)][Th(NO3)(6)] are established by X-ray crystallography. In the former, the uranyl ion is bonded to two bidentate nitrate groups and the two phosphoryl groups of the ligand L(1); the co-ordination polyhedron around the metal is a hexagonal bipyramid. The cationic moiety in the thorium complex contains three bidentate diphosphazane dioxide ligands and two bidentate nitrate groups around the ten-co-ordinated metal.
Resumo:
Plate-shaped products resulting from martensitic, diffusional, and mixed mode transformations in zirconium-base alloys are compared. in the present study. These alloys are particularly suitable for the comparison in view of the fact that the lattice correspondence between the parent beta (bcc) and the product alpha (hcp) or gamma-hydride (fct) phases are remarkably similar for different types of transformations. Crystallographic features such as orientation relations, habit planes, and interface structures associated with these transformations have been compared:, with a view toward examining whether the transformation mechanisms have characteristic imprints on these experimental observables. Martensites exhibiting dislocated lath, internally twinned plate, and self-accommodating three-plate cluster morphologies have been encountered in Zr-2.5Nb alloy. Habit planes corresponding to all these morphologies have been found to be consistent with the predictions based on the invariant plane strain (IFS) criterion. Different morphologies have been found to reflect the manner in which the neighboring martensite variants are assembled. Lattice-invariant shears (LISs) for all these cases have been identified to be either {10 (1) over bar 1}(alpha) ((1) over bar 123)(alpha) slip or twinning on (10 (1) over bar 1)(alpha) planes. Widmanstatten alpha precipitates, forming in a step-quenching treatment, have been shown to have a lath morphology, the alpha/beta interface being decorated with a periodic array of (c + a) dislocations at a spacing of 8 to 10 nm. The line vectors of these dislocations are nearly parallel to the invariant lines. The alpha precipitates, forming in the retained beta phase on aging, exhibit an internally twinned structure with a zigzag habit plane. Average habit planes for the morphologies have been found to lie near the {103}(beta) - {113}(beta) poles, which are close to the specific variant of the {112}(beta) plane, which transforms into a prismatic plane of the type {1 (1) over bar 00}(alpha). The crystallography of the formation of the gamma-hydride phase (fct) from both the alpha and beta phases is seen to match the IFS predictions. While the beta-gamma transformation can be treated approximately as a simple shear on the basal plane involving a change in the stacking sequence, the alpha-gamma transformation call be conceptually broken into a alpha --> beta transformation following the Burgers correspondence and the simple beta-gamma shear process. The active eutectoid decomposition in the Zr-Cu system, beta --> alpha + beta', has been described in terms of cooperative growth of the alpha phase from the beta phase through the Burgers correspondence and of the partially ordered beta' (structurally similar to the equilibrium Zr2Cu phase) through an ordering process. Similarities and differences in crystallographic features of these transformations have been discussed. and the importance of the invariant line vector in deciding the geometry of the corresponding habit planes has been pointed out.
Resumo:
The enantioselective synthesis of the natural products cladospolide B, cladospolide C, and iso-cladospolide B has been accomplished from tartaric acid. Key reactions in the synthetic sequence include the elaboration of a gamma-hydroxy amide derived from tartaric acid via alkene cross metathesis, Yamaguchi lactonization, and ring closing metathesis. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Synthetic aperture radar (SAR) is a powerful tool for mapping and remote sensing. The theory and operation of SAR have seen a period of intense activity in recent years. This paper attempts to review some of the more advanced topics studied in connection with modern SAR systems based on digital processing. Following a brief review of the principles involved in the operation of SAR, attention is focussed on special topics such as advanced SAR modelling and focussing techniques, in particular clutterlock and autofocus, Doppler centroid (DC) estimation methods involving seismic migration technique, moving target imaging, bistatic radar imaging, effects of system nonlinearities, etc.
Resumo:
There have been major advances in solid state and materials chemistry in the last two decades and the subject is growing rapidly. In this account, a few of the important aspects of materials chemistry of interest to the author are presented. Accordingly, transition metal oxides, which constitute the most fascinating class of inorganic materials, receive greater attention, Metal-insulator transitions in oxides, high temperature superconductivity in cuprates and colossal magnetoresistance in manganates are discussed at some length and the outstanding problems indicated, We then discuss certain other important classes of materials which include molecular materials, biomolecular materials and porous solids. Recent developments in synthetic strategies for inorganic materials are reviewed. Some results on metal nanoparticles and nanotubes are briefly presented. The overview, which is essentially intended to provide a flavour of the subject and show how it works, lists references to many crucial reviews in the recent literature.
Resumo:
A stereoselective strategy for the rapid acquisition of the complete framework (dideoxyottelione A) of the promising cytotoxic agent ottelione A, with four contiguous stereogenic centres on a hydrindane skeleton and a sensitive 4-methylenecyclohex-2-enone functionality, from the readily available Diels-Alder adduct of 1,2,3,4-tetrachloro-5,5-dimethoxycyclopentadiene and norbornadiene, is delineated.
Resumo:
The title compound I (24-(S)-Hydroxy Coprastan-3-one) crystallises in orthorhombic space group P2(1)2(1)2(1) with Z = 4. The unit cell dimensions are a = 6.701(2)Angstrom, b = 11.506(8)Angstrom, c = 32.183(4)Angstrom, V = 2481(2)Angstrom (3), D-cal = 1.077 Mg/m(3). The tide compound II (24-(R)-Hydroxy Coprastan-3-one) crystallises in orthorhombic space group P212121 with two molecules per assymetric unit and with Z = 8. The Unit cell dimensions are a = 10.954(2)Angstrom, b = 21.757(6)Angstrom, c = 21.130(7)Angstrom, V = 5035.0(2)Angstrom (3), D-cal = 1.062 Mg/m(3). In compound I and in both the molecules of compound II, the rings A, B & C are in chair conformation and the five membered ring D is in envelope conformation. The priority sequence attached to the chiral carbon C24 has "S" designation in compound I and "R" designation in compound II. The structures are stabilized by C-H . . .O and O-H---O hydrogen bonds.
Resumo:
Several novel oxides have been prepared by the decomposition of carbonate precursors of calcite structure of the general formulas Mn1−xMxCO3 (M = Mg,Co,Cd), Ca1−xMx'CO3, and Ca1−x−yMxMy”CO3.
Resumo:
We investigate the ground state of interacting spin-1/2 fermions in three dimensions at a finite density (rho similar to k(F)(3)) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector lambda equivalent to (lambda(x),lambda(y),lambda(z)), whose magnitude lambda determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (k(F)vertical bar a(s)vertical bar less than or similar to 1), the ground state in the absence of the gauge field (lambda = 0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum (lambda = 0). For large gauge couplings (lambda/k(F) >> 1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)-we call these bosons ``rashbons.'' In the absence of interactions (a(s) = 0(-)), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling lambda(T). For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of lambda near lambda(T). In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.
Resumo:
Synthesis of nanoparticles of Ni-Zn ferrite dispersed in aniline formaldehyde copolymer using a room temperature route and the effect of heat treatment on these samples were studied using XRD, FTIR spectroscopy, Fe-57 Mossbauer spectroscopy and TEM microscopy. The results show the formation of nanosized particles of Ni-Zn ferrite in the polymer matrix at room temperature. On pyrolysis, the Ni-Zn ferrite phase persists up to 500 degreesC. However, heating of composites to 700 degreesC results in the partial reduction of the spinet ferrite leading to the formation of Ni-Fe alloy under ambient conditions and complete reduction of the alloy on heating in inert atmosphere. (C) 2003 Elsevier B.V. All rights reserved.