123 resultados para Supramolecular polymers
Resumo:
Two porous organic polymers decorated with the amide functionality were synthesized mechanochemically and their properties were compared with the ones prepared by conventional solution mediated method. All the POPs were subjected to gas and water vapor sorption studies. The mechanochemically synthesized POPs have less surface area and show moderate adsorption properties compared to the solution mediated POPs. The amide based POPs show remarkable stability in water and concentrated acids.
Resumo:
Diketopyrrolopyrrole (DPP)-based pi-conjugated copolymers with thiophene have exceptionally high electron mobilities. This paper investigates electronic properties and charge carrier mobilities of selenophene containing analogues. Two new copolymers, with alternating thiophene DPP (TDPP) and selenophene DPP (SeDPP) units, were synthesized. Two side-chains, hexyl (Hex) and triethylene glycol (TEG) were employed, yielding polymers designated as PTDPPSeDPP-Hex and PTDPPSeDPP-TEG. Selenophene systems have smaller band gaps, with concomitant enhancement of the stability of the reduced state. For both polymers, ambipolar mobilities were observed in organic field-effect transistors (OFET). Grazing incidence X-ray diffraction (GIXD) data indicates preferential edge-on orientation of PTDPPSeDPP-TEG, which leads to superior charge transport properties of the TEG substituted polymer, as compared to its Hex analogue. Time-dependent-density functional theory (TDDFT) calculations corroborate the decrease in the optical band gap with the inclusion of selenophene. Ambipolar charge transport is rationalized by exceptionally wide conduction bands. Delta SCF calculations confirm the larger electron affinity, and therefore the greater stability, of the reduced form of the selenophene-containing DPP polymer in presence of chloroform.
Resumo:
The primary role of substituted side chains in organic semiconductors is to increase their solubility in common organic solvents. In the recent past, many literature reports have suggested that the side chains play a critical role in molecular packing and strongly impact the charge transport properties of conjugated polymers. In this work, we have investigated the influence of side-chains on the charge transport behavior of a novel class of diketopyrrolopyrrole (DPP) based alternating copolymers. To investigate the role of side-chains, we prepared four diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP) conjugated polymers with varied side-chains and carried out a systematic study of thin film microstructure and charge transport properties in polymer thin-film transistors (PTFTs). Combining results obtained from grazing incidence X-ray diffraction (GIXD) and charge transport properties in PTFTs, we conclude side-chains have a strong influence on molecular packing, thin film microstructure, and the charge carrier mobility of DPP-DPP copolymers. However, the influence of side-chains on optical properties was moderate. The preferential ``edge-on'' packing and dominant n-channel behavior with exceptionally high field-effect electron mobility values of >1 cm(2) V-1 s(-1) were observed by incorporating hydrophilic (triethylene glycol) and hydrophobic side-chains of alternate DPP units. In contrast moderate electron and hole mobilities were observed by incorporation of branched hydrophobic side-chains. This work clearly demonstrates that the subtle balance between hydrophobicity and hydrophilicity induced by side-chains is a powerful strategy to alter the molecular packing and improve the ambipolar charge transport properties in DPP-DPP based conjugated polymers. Theoretical analysis supports the conclusion that the side-chains influence polymer properties through morphology changes, as there is no effect on the electronic properties in the gas phase. The exceptional electron mobility is at least partially a result of the strong intramolecular conjugation of the donor and acceptor as evidenced by the unusually wide conduction band of the polymer.
Resumo:
Two new low band gap D-A structured conjugated polymers, PBDTTBI and PBDTBBT, based on 2-(4-(trifluoromethyl)phenyl)-1H-benzod]imidazole and benzo1,2-c; 4,5-c']bis1,2,5]thiadiazole acceptor units with benzo1,2-b; 3,4-b']dithiophene as a donor unit have been designed and synthesized via a Stille coupling reaction. The incorporation of the benzo1,2-c; 4,5-c']bis1,2,5]thiadiazole unit into PBDTBBT has significantly altered the optical and electrochemical properties of the polymer. The optical band gap estimated from the onset absorption edge is similar to 1.88 eV and similar to 1.1 eV, respectively for PBDTTBI and PBDTBBT. It is observed that PBDTBBT exhibited a deeper HOMO energy level (similar to 4.06 eV) with strong intramolecular charge transfer interactions. Bulk heterojunction solar cells fabricated with a configuration of ITO/PEDOT: PSS/PBDTBBT: PC71BM/Al exhibited a best power conversion efficiency of 0.67%, with a short circuit current density of 4.9 mA cm(-2), an open-circuit voltage of 0.54 V and a fill factor of 25%.
Resumo:
A comprehensive analysis of the crystal packing and the energetic features of a series of four biologically active molecules belonging to the family of substituted 4-(benzylideneamino)-3-(4-fluoro-3-phenoxyphenyl)-1H-1,2,4-triazole-5-(4 H)-thione derivatives have been performed based on the molecular conformation and the supramolecular packing. This involves the formation of a short centrosymmetric R-2(2)(8) NH...S supramolecular synthon in the solid state, including the presence of CH...S, CH...O, CH...N, CH...F, CH...Cl, CF...FC, CCl...ClC, and CH...pi intermolecular interactions along with pp stacking to evaluate the role of noncovalent interactions in the crystal. The presence of such synthons has a substantial contribution toward the interaction energy (-18 to -20 kcal/mol) as obtained from the PIXEL calculation, wherein the Coulombic and polarization contribution are more significant than the dispersion contribution. The geometrical characteristics of such synthons favor short distance, and the population of related molecules having these geometries is rare as has been obtained from the Cambridge Structural Database (CSD). Furthermore, their interaction energies have been compared with those present in our molecules in the solid state. The topological characteristics of the NH...S supramolecular synthon, in addition to related weak interactions, CH...N, CH...Cl, CF...FC, and CCl...ClC, have been estimated using the quantum theory of atoms in molecules (QTAIM). In addition, an analysis of the Hirshfeld surface and associated fingerprint plots of these four molecules also have provided a platform for the evaluation of the contribution of different atom...atom contacts, which contribute toward the packing of the molecules in solids.
Resumo:
Several covalent strategies towards surface charge-reversal in nanochannels have been reported with the purpose of manipulating ion transport. However, covalent routes lack dynamism, modularity and post-synthetic flexibility, and hence restrict their applicability in different environments. Here, we introduce a facile non-covalent approach towards charge-reversal in nanochannels (< 10 nm) using strong charge-transfer interactions between dicationic viologen (acceptor) and trianionic pyranine (donor). The polarity of ion transport was switched from anion selective to ambipolar to cation selective by controlling the extent of viologen bound to the pyranine. We could also regulate the ion transport with respect to pH by selecting a donor with pH-responsive functional groups. The modularity of this approach further allows facile integration of various functional groups capable of responding to stimuli such as light and temperature to modulate the transport of ions as well as molecules.
Resumo:
The NO2 center dot center dot center dot I supramolecular synthon is a halogen bonded recognition pattern that is present in the crystal structures of many compounds that contain these functional groups. These synthons have been previously distinguished as P, Q, and R types using topological and geometrical criteria. A five step IR spectroscopic sequence is proposed here to distinguish between these synthon types in solid samples. Sets of known compounds that contain the P, Q, and R synthons are first taken to develop IR spectroscopic identifiers for them. The identifiers are then used to create graded IR filters that sieve the synthons. These filters contain signatures of the individual NO2 center dot center dot center dot I synthons and may be applied to distinguish between P, Q, and R synthon varieties. They are also useful to identify synthons that are of a borderline character, synthons in disordered structures wherein the crystal structure in itself is not sufficient to distinguish synthon types, and in the identification of the NO2 center dot center dot center dot I synthons in compounds with unknown crystal structures. This study establishes clear differences for the three different geometries P, Q, and Rand in the chemical differences in the intermolecular interactions contained in the synthons. Our IR method can be conveniently employed when single crystals are not readily available also in high throughput analysis. It is possible that such identification may also be adopted as an input for crystal structure prediction analysis of compounds with unknown crystal structures.
Resumo:
Systematic experiments have been carried out by monitoring the in-situ pressure and thickness profiles for three different configurations, viz., flat plate, flat plate with a central circular hole, and an L-section using vacuum assisted resin transfer molding (VARTM) process. The effect of anisotropy on resin flow has been quantified by considering uni-directional carbon fiber preforms with 0 degrees and 90 degrees orientation to the flow direction for each configuration. A quasi-isotropic 45 degrees/0 degrees/-45 degrees/90 degrees](S) layup has also been included for flat plate case. Additionally, the study has been extended to understand the effect of using high permeability medium for each configuration. Fluid pressure profiles and thickness variation profiles have been obtained using an array of pressure sensors and linear variable differential transformers for each configuration. Experimental data reveal that anisotropy (due to changing fiber orientations), configuration, and gravity significantly change fluid pressure and displacement fields obtained during VARTM.
Resumo:
Supramolecular organization of a metal complex may significantly contribute to the magnetization dynamics of mononuclear SMMs. This is illustrated for a heptacoordinated Fe(II) complex with rather moderate Ising-type anisotropy for which a slow magnetization relaxation with significant energy barrier was reached when this complex was properly organized in the crystal lattice. Incidentally, it is the first example of single-ion magnet behaviour of Fe(II) in a pentagonal bipyramid surrounding.
Resumo:
Weak hydrogen bonds of the type C-H center dot center dot center dot X (X: N, O, S and halogens) have evoked considerable interest over the years, especially in the context of crystal engineering. However, association patterns of weak hydrogen bonds are generally difficult to characterize, and yet the identification of such patterns is of interest, especially in high throughput work or where single crystal X-ray analysis is difficult or impossible. To obtain structural information on such assemblies, we describe here a five step IR spectroscopic method that identifies supramolecular synthons in weak hydrogen bonded dimer assemblies, bifurcated systems, and p-electron mediated synthons. The synthons studied here contain C-H groups as hydrogen bond donors. The method involves: (i) identifying simple compounds/cocrystals/salts that contain the hydrogen bonded dimer synthon of interest or linear hydrogen bonded assemblies between the same functionalities; (ii) scanning infrared (IR) spectra of the compounds; (iii) identifying characteristic spectral differences between dimer and linear; (iv) assigning identified bands as marker bands for identification of the supramolecular synthon, and finally (v) identifying synthons in compounds whose crystal structures are not known. The method has been effectively implemented for assemblies involving dimer/linear weak hydrogen bonds in nitrobenzenes (C-H center dot center dot center dot O-NO), nitro-dimethylamino compounds (NMe2 center dot center dot center dot O2N), chalcones (C-H center dot center dot center dot O=C), benzonitriles (C-H center dot center dot center dot N C) and fluorobenzoic acids (C-H center dot center dot center dot F-C). Two other special cases of C-H center dot center dot center dot pi and N-H center dot center dot center dot pi synthons were studied in which the band shape of the C-H stretch in hydrocarbons and the N-H deformation in aminobenzenes was examined.
Resumo:
A facile hydrogelation of a p-pyridylenevinylene derivative (PV) bearing oxyethylene chains in the presence of orotic acid (OA) occurs via various non-covalent interactions. Depending on the PV: OA molar ratio, the hydrogel shows vesicle to either cluster-type aggregate or fiber transformation. Visual color tuning, stimuli-responsiveness and injectable properties of the hydrogel are also observed.
Resumo:
It has been 20 years since the concept of supramolecular synthon was introduced with the purpose of rational supramolecular synthesis. While this concept has been greatly successful in employing a retrosynthetic approach in crystal engineering, the past few years have seen a continuous evolution of supramolecular synthons from being a synthetic subunit to a basic unit for understanding the dynamics of crystallization. This review attempts to give a glimpse of such developments.
Resumo:
The crystallization of 28 binary and ternary cocrystals of quercetin with dibasic coformers is analyzed in terms of a combinatorial selection from a solution of preferred molecular conformations and supramolecular synthons. The crystal structures are characterized by distinctive O-H center dot center dot center dot N and O-H center dot center dot center dot O based synthons and are classified as nonporous, porous and helical. Variability in molecular conformation and synthon structure led to an increase in the energetic and structural space around the crystallization event. This space is the crystal structure landscape of the compound and is explored by fine-tuning the experimental conditions of crystallization. In the landscape context, we develop a strategy for the isolation of ternary cocrystals with the use of auxiliary template molecules to reduce the molecular and supramolecular `confusion' that is inherent in a molecule like quercetin. The absence of concomitant polymorphism in this study highlights the selectivity in conformation and synthon choice from the virtual combinatorial library in solution.
Resumo:
We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP: PS size ratios, xi = 0.14 and 2.76 (where, xi = M-g/M-m, M-g and M-m being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with xi = 0.14 could be modeled reasonably well, while the structure of blends with xi = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with xi = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with xi = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to understand not only the structural behavior of PGNPs but also possibly their dynamics and thermo-mechanical properties as well. (C) 2015 AIP Publishing LLC.
Resumo:
Two new Cu(I) compounds, namely Cu-2(bds)(bpy)(2)]center dot 2H(2)O (1) and Cu-4(bds)(2)(azpy)(4)]center dot 6H(2)O (3) (where bds = benzene-1,3-disulfonate, bpy = 4,4'-bipyridine and azpy = 4,4'-azopyridine), and four Ag(I) compounds, namely Ag-2(bds)(bpy)(2)]center dot 2H(2)O (2), Ag-2(bds)(azpy)(2)]center dot 4H(2)O (4), Ag(bds)(1/2)(bpe)]center dot 3H(2)O (5), and Ag-4(bds)(2)(tmdp)(4)]center dot 9H(2)O (6) (where bpe = 1,2-di(4-pyridyl) ethylene and tmdp = 4,4'trimethylenedipyridine), have been synthesized, and their structures were determined and characterized by elemental analysis, IR, UV-vis and thermal studies. The structure of the compounds changed from 1D (1 and 2) to 2D (3-5) and interpenetrated 3D (6). In the case of 5, a solid-state 2 + 2] photochemical cycloaddition reaction has been performed. Compound 2 exhibits a reversible anion exchange for perchlorate and permanganate, whereas the other compounds (1, 3-6) exhibit an irreversible anion exchange behaviour for perchlorate. Catalytic studies on 2 indicate Lewis acidity.