300 resultados para Strictly hyperbolic polynomial
Resumo:
The objective is to present the formulation of numerically integrated modified virtual crack closure integral technique for concentrically and eccentrically stiffened panels for computation of strain-energy release rate and stress intensity factor based on linear elastic fracture mechanics principles. Fracture analysis of cracked stiffened panels under combined tensile, bending, and shear loads has been conducted by employing the stiffened plate/shell finite element model, MQL9S2. This model can be used to analyze plates with arbitrarily located concentric/eccentric stiffeners, without increasing the total number of degrees of freedom, of the plate element. Parametric studies on fracture analysis of stiffened plates under combined tensile and moment loads have been conducted. Based on the results of parametric,studies, polynomial curve fitting has been carried out to get best-fit equations corresponding to each of the stiffener positions. These equations can be used for computation of stress intensity factor for cracked stiffened plates subjected to tensile and moment loads for a given plate size, stiffener configuration, and stiffener position without conducting finite element analysis.
Resumo:
The possibility of applying two approximate methods for determining the salient features of response of undamped non-linear spring mass systems subjected to a step input, is examined. The results obtained on the basis of these approximate methods are compared with the exact results that are available for some particular types of spring characteristics. The extension of the approximate methods for non-linear systems with general polynomial restoring force characteristics is indicated.
Resumo:
We explore the application of pseudo time marching schemes, involving either deterministic integration or stochastic filtering, to solve the inverse problem of parameter identification of large dimensional structural systems from partial and noisy measurements of strictly static response. Solutions of such non-linear inverse problems could provide useful local stiffness variations and do not have to confront modeling uncertainties in damping, an important, yet inadequately understood, aspect in dynamic system identification problems. The usual method of least-square solution is through a regularized Gauss-Newton method (GNM) whose results are known to be sensitively dependent on the regularization parameter and data noise intensity. Finite time,recursive integration of the pseudo-dynamical GNM (PD-GNM) update equation addresses the major numerical difficulty associated with the near-zero singular values of the linearized operator and gives results that are not sensitive to the time step of integration. Therefore, we also propose a pseudo-dynamic stochastic filtering approach for the same problem using a parsimonious representation of states and specifically solve the linearized filtering equations through a pseudo-dynamic ensemble Kalman filter (PD-EnKF). For multiple sets of measurements involving various load cases, we expedite the speed of thePD-EnKF by proposing an inner iteration within every time step. Results using the pseudo-dynamic strategy obtained through PD-EnKF and recursive integration are compared with those from the conventional GNM, which prove that the PD-EnKF is the best performer showing little sensitivity to process noise covariance and yielding reconstructions with less artifacts even when the ensemble size is small.
Resumo:
We explore the application of pseudo time marching schemes, involving either deterministic integration or stochastic filtering, to solve the inverse problem of parameter identification of large dimensional structural systems from partial and noisy measurements of strictly static response. Solutions of such non-linear inverse problems could provide useful local stiffness variations and do not have to confront modeling uncertainties in damping, an important, yet inadequately understood, aspect in dynamic system identification problems. The usual method of least-square solution is through a regularized Gauss-Newton method (GNM) whose results are known to be sensitively dependent on the regularization parameter and data noise intensity. Finite time, recursive integration of the pseudo-dynamical GNM (PD-GNM) update equation addresses the major numerical difficulty associated with the near-zero singular values of the linearized operator and gives results that are not sensitive to the time step of integration. Therefore, we also propose a pseudo-dynamic stochastic filtering approach for the same problem using a parsimonious representation of states and specifically solve the linearized filtering equations through apseudo-dynamic ensemble Kalman filter (PD-EnKF). For multiple sets ofmeasurements involving various load cases, we expedite the speed of the PD-EnKF by proposing an inner iteration within every time step. Results using the pseudo-dynamic strategy obtained through PD-EnKF and recursive integration are compared with those from the conventional GNM, which prove that the PD-EnKF is the best performer showing little sensitivity to process noise covariance and yielding reconstructions with less artifacts even when the ensemble size is small. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
This paper deals with the approximate solutions of non-linear autonomous systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on the ultraspherical polynomial expansions. The method is illustrated with examples and the results are compared with the digital and analog computer solutions. There is a close agreement between the analytical and exact results.
An approximate analysis of non-linear non-conservative systems subjected to step function excitation
Resumo:
This paper deals with the approximate analysis of the step response of non-linear nonconservative systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on ultraspherical polynomial expansions. The Krylov-Bogoliubov results are given by a particular set of these polynomials. The method has been applied to study the step response of a cubic spring mass system in presence of viscous, material, quadratic, and mixed types of damping. The approximate results are compared with the digital and analogue computer solutions and a close agreement has been found between the analytical and the exact results.
Resumo:
The force constants of H2 and Li2 are evaluated employing their extended Hartree-Fock wavefunctions by a polynomial fit of their force curves. It is suggested that, based on incomplete multiconfiguration Hartree-Fock wavefunctions, force constants calculated from the energy derivatives are numerically more accurate than those obtained from the derivatives of the Hellmann-Feynman forces. It is observed that electrons relax during the nuclear vibrations in such a fashion as to facilitate the nuclear motions.
Resumo:
We consider a variant of the popular matching problem here. The input instance is a bipartite graph $G=(\mathcal{A}\cup\mathcal{P},E)$, where vertices in $\mathcal{A}$ are called applicants and vertices in $\mathcal{P}$ are called posts. Each applicant ranks a subset of posts in an order of preference, possibly involving ties. A matching $M$ is popular if there is no other matching $M'$ such that the number of applicants who prefer their partners in $M'$ to $M$ exceeds the number of applicants who prefer their partners in $M$ to $M'$. However, the “more popular than” relation is not transitive; hence this relation is not a partial order, and thus there need not be a maximal element here. Indeed, there are simple instances that do not admit popular matchings. The questions of whether an input instance $G$ admits a popular matching and how to compute one if it exists were studied earlier by Abraham et al. Here we study reachability questions among matchings in $G$, assuming that $G=(\mathcal{A}\cup\mathcal{P},E)$ admits a popular matching. A matching $M_k$ is reachable from $M_0$ if there is a sequence of matchings $\langle M_0,M_1,\dots,M_k\rangle$ such that each matching is more popular than its predecessor. Such a sequence is called a length-$k$ voting path from $M_0$ to $M_k$. We show an interesting property of reachability among matchings in $G$: there is always a voting path of length at most 2 from any matching to some popular matching. Given a bipartite graph $G=(\mathcal{A}\cup\mathcal{P},E)$ with $n$ vertices and $m$ edges and any matching $M_0$ in $G$, we give an $O(m\sqrt{n})$ algorithm to compute a shortest-length voting path from $M_0$ to a popular matching; when preference lists are strictly ordered, we have an $O(m+n)$ algorithm. This problem has applications in dynamic matching markets, where applicants and posts can enter and leave the market, and applicants can also change their preferences arbitrarily. After any change, the current matching may no longer be popular, in which case we are required to update it. However, our model demands that we switch from one matching to another only if there is consensus among the applicants to agree to the switch. Hence we need to update via a voting path that ends in a popular matching. Thus our algorithm has applications here.
Resumo:
Transport of 1-14C-IAA in successive stem segments of Cuscuta was strictly basipetal in growing and non growing regions of the vine with a flux velocity of 10-12 mm/h (intercept method). This transport showed a distinct peaked profile, increasing from a low value at 10 mm from the apex to a maximum between 50 and 90 mm before declining to a low value again around 160 mm at which elongation growth ceased. The IAA transport profile paralleled the in vivo growth rate profile, though the latter peaked ahead of transport. A better correlation was observed between the profile of growth responsiveness of the vine to exogenous IAA application and the profile of IAA transport. Growth responsiveness was determined as the differential in growth rate of stem segments in vitro in the absence and presence of growth optimal concentration of IAA (10 μm). Retention of exogenous IAA in the stem was maximal where transport decreased, and this coincided with the region of maximal conjugation of applied 1-14C-IAA to aspartic acid to form indoleacetylaspartate (IAAsp). In addition to aspartate, IAA was conjugated to a small extent to an unidentified compound. IAA destruction by decarboxylation was greatest where transport was low, particularly in the nongrowing region, where lignification occurred (i.e., beyond 180 mm). At concentrations up to 20 μM, a pulse of 1-14C-IAA chased by "cold" IAA moved as a peak (with a peak displacement velocity of 12-18 mm/h) in the "growth" region of the vine, but became diffusionlike where growth either fell off steeply or ceased. At a higher (50 μM) IAA concentration, though uptake was not saturated, transport in the growth region became diffusionlike, indicating saturation of the system. Reduced IAA flux in the region where growth responsiveness to IAA declined coincided with the region of increased IAA conjugation. However, it cannot be concluded whether increased IAA conjugation was the cause or effect of decreased IAA flux. Application of benzyladenine to the vines in vivo, a treatment that elicited haustoria formation by 72 h, resulted in the inhibition of both IAA transport and elongation growth rate in the subapical region. In vitro treatment of vine segments with BA similarly increased IAA retention and decreased IAA transport. IAA loss was suppressed, and conjugation to IAAsp was enhanced. © 1989 Springer-Verlag New York Inc.
Resumo:
The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Tanner Graph representation of linear block codes is widely used by iterative decoding algorithms for recovering data transmitted across a noisy communication channel from errors and erasures introduced by the channel. The stopping distance of a Tanner graph T for a binary linear block code C determines the number of erasures correctable using iterative decoding on the Tanner graph T when data is transmitted across a binary erasure channel using the code C. We show that the problem of finding the stopping distance of a Tanner graph is hard to approximate within any positive constant approximation ratio in polynomial time unless P = NP. It is also shown as a consequence that there can be no approximation algorithm for the problem achieving an approximation ratio of 2(log n)(1-epsilon) for any epsilon > 0 unless NP subset of DTIME(n(poly(log n))).
Resumo:
The physical design of a VLSI circuit involves circuit partitioning as a subtask. Typically, it is necessary to partition a large electrical circuit into several smaller circuits such that the total cross-wiring is minimized. This problem is a variant of the more general graph partitioning problem, and it is known that there does not exist a polynomial time algorithm to obtain an optimal partition. The heuristic procedure proposed by Kernighan and Lin1,2 requires O(n2 log2n) time to obtain a near-optimal two-way partition of a circuit with n modules. In the VLSI context, due to the large problem size involved, this computational requirement is unacceptably high. This paper is concerned with the hardware acceleration of the Kernighan-Lin procedure on an SIMD architecture. The proposed parallel partitioning algorithm requires O(n) processors, and has a time complexity of O(n log2n). In the proposed scheme, the reduced array architecture is employed with due considerations towards cost effectiveness and VLSI realizability of the architecture.The authors are not aware of any earlier attempts to parallelize a circuit partitioning algorithm in general or the Kernighan-Lin algorithm in particular. The use of the reduced array architecture is novel and opens up the possibilities of using this computing structure for several other applications in electronic design automation.
Resumo:
The max-coloring problem is to compute a legal coloring of the vertices of a graph G = (V, E) with a non-negative weight function w on V such that Sigma(k)(i=1) max(v epsilon Ci) w(v(i)) is minimized, where C-1, ... , C-k are the various color classes. Max-coloring general graphs is as hard as the classical vertex coloring problem, a special case where vertices have unit weight. In fact, in some cases it can even be harder: for example, no polynomial time algorithm is known for max-coloring trees. In this paper we consider the problem of max-coloring paths and its generalization, max-coloring abroad class of trees and show it can be solved in time O(vertical bar V vertical bar+time for sorting the vertex weights). When vertex weights belong to R, we show a matching lower bound of Omega(vertical bar V vertical bar log vertical bar V vertical bar) in the algebraic computation tree model.
Resumo:
The problem of denoising damage indicator signals for improved operational health monitoring of systems is addressed by applying soft computing methods to design filters. Since measured data in operational settings is contaminated with noise and outliers, pattern recognition algorithms for fault detection and isolation can give false alarms. A direct approach to improving the fault detection and isolation is to remove noise and outliers from time series of measured data or damage indicators before performing fault detection and isolation. Many popular signal-processing approaches do not work well with damage indicator signals, which can contain sudden changes due to abrupt faults and non-Gaussian outliers. Signal-processing algorithms based on radial basis function (RBF) neural network and weighted recursive median (WRM) filters are explored for denoising simulated time series. The RBF neural network filter is developed using a K-means clustering algorithm and is much less computationally expensive to develop than feedforward neural networks trained using backpropagation. The nonlinear multimodal integer-programming problem of selecting optimal integer weights of the WRM filter is solved using genetic algorithm. Numerical results are obtained for helicopter rotor structural damage indicators based on simulated frequencies. Test signals consider low order polynomial growth of damage indicators with time to simulate gradual or incipient faults and step changes in the signal to simulate abrupt faults. Noise and outliers are added to the test signals. The WRM and RBF filters result in a noise reduction of 54 - 71 and 59 - 73% for the test signals considered in this study, respectively. Their performance is much better than the moving average FIR filter, which causes significant feature distortion and has poor outlier removal capabilities and shows the potential of soft computing methods for specific signal-processing applications.
Resumo:
Three-dimensional (3-D) kinematical conservation laws (KCL) are equations of evolution of a propagating surface Omega(t) in three space dimensions. We start with a brief review of the 3-D KCL system and mention some of its properties relevant to this paper. The 3-D KCL, a system of six conservation laws, is an underdetermined system to which we add an energy transport equation for a small amplitude 3-D nonlinear wavefront propagating in a polytropic gas in a uniform state and at rest. We call the enlarged system of 3-D KCL with the energy transport equation equations of weakly nonlinear ray theory (WNLRT). We highlight some interesting properties of the eigenstructure of the equations of WNLRT, but the main aim of this paper is to test the numerical efficacy of this system of seven conservation laws. We take several initial shapes for a nonlinear wavefront with a suitable amplitude distribution on it and let it evolve according to the 3-D WNLRT. The 3-D WNLRT is a weakly hyperbolic 7 x 7 system that is highly nonlinear. Here we use the staggered Lax-Friedrichs and Nessyahu-Tadmor central schemes and have obtained some very interesting shapes of the wavefronts. We find the 3-D KCL to be suitable for solving many complex problems for which there presently seems to be no other method capable of giving such physically realistic features.