121 resultados para Strawberries -- Effect of atmosheric carbon dioxide on
Resumo:
The temperature of allotropic phase transformation in ZnS (cubic to wurtzite) changes with pressure and particle size. In this paper we have explored the interrelation among these through a detailed study of ZnS powders obtained by a temperature-controlled high energy milling process. By employing the combined effect of temperature and pressure in an indigenously built cryomill, we have demonstrated a large-scale, low-temperature synthesis of wurtzite ZnS nanoparticles. The synthesized products have been characterized for their phase and microstructure by the use of X-ray diffraction and transmission electron microscopic techniques. Further, it has been demonstrated that the synthesized materials exhibit photoluminescence emissions in the UV-visible region with an unusual doublet pattern due to the presence of both cubic and hexagonal wurtzite domains in the same particles. By further fine-tuning the processing conditions, it may be possible to achieve controlled defect related photoluminescence emissions from the ZnS nanoparticles.
Resumo:
The effects of evaporation and the presence of agglomerating nanoparticles on the oscillation characteristics of pendant droplets are studied experimentally using ethanol and aqueous nanoalumina suspension, respectively. Axisymmetric oscillations induced by a round air jet are considered. Wavelet transform of the time evolution of the 2nd modal coefficient revealed that while a continuous increase in the natural frequency of the droplet occurs with time due to the diameter regression induced by vaporization in the case of ethanol droplet, no such change in resonant frequency occurs in the case of the agglomerating droplet. However, a gradual reduction in the oscillation amplitude ensues as the agglomeration becomes dominant. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a theoretical model for studying the effects of shrinkage induced flow on the growth rate of binary alloy dendrites. An equivalent undercooling of the melt is defined in terms of ratio of the phase densities to represent the change in dendrite growth rate due to variation in solutal and thermal transport resulting from shrinkage induced flow. Subsequently, results for dendrite growth rate predicted by the equivalent undercooling model is compared with the corresponding predictions obtained using an enthalpy based numerical method for dendrite growth with shrinkage. The agreement is found to be good. Published by Elsevier Ltd.
Resumo:
First-principles density functional theory has been used to evaluate the shear and cleavage strength in terms of Griffith work and generalized stacking fault energy (GSF) of (001) plane for gamma, gamma' and gamma-gamma' system as a function of distance from the gamma/gamma' interface. Calculation of Griffith work suggests higher cleavage energy for bulk gamma as compared to gamma' while the GSF calculation suggests higher shear strength for bulk gamma' as compared to gamma. It has been found that the shear strength of the cubic plane of the gamma/gamma' interface is marginally lower than those of bulk gamma and gamma' phases. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Copper(II) and copper(I) complexes of a newly designed and crystallographically characterized Schiff base (HL) derived from rhodamine hydrazide and cinnamaldehyde were isolated in pure form formulated as Cu(L)(NO3)] (L-Cu) (1) and Cu(HL)(CH3CN)(H2O)]ClO4 (HL-Cu) (2), and characterized by physicochemical and spectroscopic tools. Interestingly, complex 1 but not 2 offers red fluorescence in solution state, and eventually HL behaves as a Cu(II) ions selective FRET based fluorosensor in HEPES buffer (1 mM, acetonitrile-water: 1/5, v/v) at 25 degrees C at biological pH with almost no interference of other competitive ions. The dependency of the FRET process on the +2 oxidation state of copper has been nicely supported by exhaustive experimental studies comprising electronic, fluorimetric, NMR titration, and theoretical calculations. The sensing ability of HL has been evaluated by the LOD value towards Cu(II) ions (83.7 nM) and short responsive time (5-10 s). Even the discrimination of copper(I) and copper(II) has also been done using only UV-Vis spectroscopic study. The efficacy of this bio-friendly probe has been determined by employing HL to detect the intercellular distribution of Cu(II) ions in HeLa cells by developing image under fluorescence microscope.
Resumo:
An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield.
Resumo:
The present investigation deals with grain boundary engineering of a modified austenitic stainless steel to obtain a material with enhanced properties. Three types of processing that are generally in agreement with the principles of grain boundary engineering were carried out. The parameters for each of the processing routes were fine-tuned and optimized. The as-processed samples were characterized for microstructure and texture. The influence of processing on properties was estimated by evaluating the room temperature mechanical properties through micro-tensile tests. It was possible to obtain remarkably high fractions of CSL boundaries in certain samples. The results of the micro-tensile tests indicate that the grain boundary engineered samples exhibited higher ductility than the conventionally processed samples. The investigation provides a detailed account of the approach to be adopted for GBE processing of this grade of steel. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystalline strontium hexaferrites SrFe12-2x (Ni2+-Zr4+)(x)O-19] nanoparticles were successfully synthesized by sal gel process. For densification the powders were sintered at 950 degrees C/4 h. The sintered samples were characterized by X-ray diffraction (XRD), surface area measurement, and field emission scanning electron microscope (FESEM). The lattice parameter a is almost constant but c increased with x upto 0.8 and then decreased. The frequency dependent complex permittivity (epsilon and epsilon `' and permeability (mu' and mu `') and magnetic properties such as saturation magnetization (M-s), coercive field (H-c) were studied. If is observed that saturation magnetization increased gradually from 57.82 emuig to 67.2 emufg as x increased from 0.2 to 0.4 and then decreased from 672 emufg to 31.63 ernufg for x=1.0. In present study, x=0.4 shows high value of M-s 67.2 emu/g. The real part of permittivity (epsilon') remains constant upto a frequency 1 GHz and increases further with an increase of frequency, a resonance and anti resonance peak was observed above 1 GHz for all the samples. In real part of permeability (mu') the relaxation frequency is observed above 1 GHz for all the samples and it is attributed to the domain wall motion. It is well known that the permeability for polycrystalline ferrites can be described as the superposition of two different magnetizing mechanisms: spin rotation and domain wall motion. These low coercive strontium hexaferrites are suitable for magnetic recording applications in hard disks, floppy disks, video tapes, etc. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Pure ZnO and co-doped (Mn, Ag) ZnO nanoparticles have been successfully prepared by chemical co-precipitation method without using a capping agent. X-ray diffraction (XRD) studies confirms the presence of wurtzite (hexagonal) crystal structure similar to undoped ZnO, suggesting that doped Mn, Ag ions are substituted to the regular Zn sites. The morphology of the samples were studied by scanning electron microscopy (SEM). The chemical composition of pure and co-doped ZnO nanoparticles were characterized by energy dispersive X-ray analysis spectroscopy (EDAX). Optical absorption properties were determined by UV-vis Diffuse Reflectance Spectrophotometer. The incorporation of Ag+, Mn2+ in the place of Zn2+ provoked to decrease the size of nanocrystals as compared to pure ZnO. Optical absorption measurements indicates blue shift in the absorption band edge upon Ag, Mn ions doped ZnO nanoparticles.
Resumo:
The first hyperpolarizability (beta) of a series of half-sandwich Ru complexes with a mercaptobenzothiazole ligand bearing a halogen atom substitution in the para-position has been investigated by hyper-Rayleigh scattering and quantum chemical calculations. The heterocyclic ligand with a bromine atom in the para position makes it a very good donor and charge flows to the Ru center enhancing the beta value of the complex by a factor of 2 compared to the complex with the ligand without the halogen substitution. The resonance (+R) and the inductive (-I) effects exerted by the halogen atom in the para position push electrons in opposing directions in the complex. For the Br and Cl atoms the resonance effect dominates which enables the ligand to donate electrons to the metal center thereby increasing the hyperpolarizability whereas for the fluorine atom, the inductive effect is dominant which reduces the charge flow to the metal and the hyperpolarizability drops even below that of the unsubstituted ligand. This unprecedented halogen atom effect on beta of metal complexes is reported. (C) 2015 Elsevier By. All rights reserved.
Resumo:
Effect of MnO addition on microstructure and ionic transport properties of nanocrystalline cubic(c)-ZrO2 is reported. Monoclinic (m) ZrO2 powders with 10-30 mol% MnO powder are mechanically alloyed in a planetary ball mill at room temperature for 10 h and annealed at 550 degrees C for 6 h. In all compositions m-ZrO2 transforms completely to nanocrystalline c-ZrO2 phase and MnO is fully incorporated into c-ZrO2 lattice. Rietveld's refinement technique is employed for detailed microstructure analysis by analyzing XRD patterns. High resolution transmission electron microscopy (HRTEM) analysis confirms the complete formation of c-ZrO2 phase. Presence of stoichiometric Mn in c-ZrO2 powder is confirmed by Electron Probe Microscopy analysis. XPS analysis reveals that Mn is mostly in Mn2+ oxidation state. A correlation between lattice parameter and oxygen vacancy is established. A detailed ionic conductivity measurement in the 250 degrees-575 degrees C temperature range describes the effect of MnO on conductivity of c-ZrO2. The ionic conductivity (s) of 30 mol% MnO alloyed ZrO2 at 550 degrees C is 0.04 s cm(-1). Electrical relaxation studies are carried out by impedance and modulus spectroscopy. Relaxation frequency is found to increase with temperature and MnO mol fraction. Electrical characterization predicts that these compounds have potentials for use as solid oxide fuel cell electrolyte material. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Eutectic growth offers a variety of examples for pattern formation which are interesting both for theoreticians as well as experimentalists. One such example of patterns is ternary eutectic colonies which arise as a result of instabilities during growth of two solid phases. Here, in addition to the two major components being exchanged between the solid phases during eutectic growth, there is an impurity component which is rejected by both solid phases. During progress of solidification, there develops a boundary layer of the third impurity component ahead of the solidification front of the two solid phases. Similar to Mullins-Sekerka type instabilities, such a boundary layer tends to make the global solidification envelope unstable to morphological perturbations giving rise to two-phase cells. This phenomenon has been studied numerically in two dimensions for the conditions of directional solidification, by Plapp and Karma (Phys Rev E 66:061608, 2002) using phase-field simulations. While, in the work by Plapp and Karma (Phys Rev E 66:061608, 2002) all interfaces are isotropic, in our presentation, we extend the phase-field model by considering interfacial anisotropy in the solid-solid and solid-liquid interfaces and characterize the role of interfacial anisotropy on the stability of the growth front through phase-field simulations in two dimensions.
Resumo:
The double perovskite Y2NiMnO6 displays ferromagnetic transition at T-c approximate to 81 K. The ferromagnetic order at low temperature is confirmed by the saturation value of magnetization (Ms) and also validated by the refined ordered magnetic moment values extracted from neutron powder diffraction data at 10 K. This way, the dominant Mn4+ and Ni2+ cationic ordering is confirmed. The cation-ordered P2(1)/n nuclear structure is revealed by neutron powder diffraction studies at 300 and 10 K. Analysis of the frequency-dependent dielectric constant and equivalent circuit analysis of impedance data take into account the bulk contribution to the total dielectric constant. This reveals an anomaly which coincides with the ferromagnetic transition temperature (T-c). Pyrocurrent measurements register a current flow with onset near T-c and a peak at 57 K that shifts with temperature ramp rate. The extrinsic nature of the observed pyrocurrent is established by employing a special protocol measurement. It is realized that the origin is due to reorientation of electric dipoles created by the free charge carriers and not by spontaneous electric polarization at variance with recently reported magnetism-driven ferroelectricity in this material.
Resumo:
Ground state magnetic properties are studied by incorporating the super-exchange interaction (J(se)) in the spin-dependent Falicov-Kimball model (FKM) between localized (f-) electrons on a triangular lattice for half filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the ground state magnetic properties. We have found that the magnetic moment of (d-) and (f-) electrons strongly depend on the value of Hund's exchange (J), super-exchange interaction (J(se)) and also depends on the number of (d-) electrons (N-d). The ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM) state as we decrease (N-d). Also the density of d electrons at each site depends on the value of J and J(se).
Resumo:
Low surface brightness (LSB) galaxies form a major class of galaxies, and are characterized by low disc surface density and low star formation rate. These are known to be dominated by dark matter halo from the innermost regions. Here, we study the role of the dark matter halo on the grand-design, m = 2, spiral modes in a galactic disc by carrying out a global mode analysis in the WKB approximation. The Bohr-Sommerfeld quantization rule is used to determine how many discrete global spiral modes are permitted. First, a typical superthin, LSB galaxy UGC 7321 is studied by taking only the galactic disc, modelled as a fluid; and then the disc embedded in a dark matter halo. We find that both cases permit the existence of global spiral modes. This is in contrast to earlier results where the inclusion of dark matter halo was shown to nearly fully suppress local, swing-amplified spiral features. Although technically global modes are permitted in the fluid model as shown here, we argue that due to lack of tidal interactions, these are not triggered in LSB galaxies. For comparison, we carried out a similar analysis for the Galaxy, for which the dark matter halo does not dominate in the inner regions. We show that here too the dark matter halo has little effect, hence the disc embedded in a halo is also able to support global modes. The derived pattern speed of the global mode agrees fairly well with the observed value for the Galaxy.