258 resultados para Stars: emission-line
Resumo:
Notched three point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and during the fracture process acoustic emissions (AE) were simultaneously monitored. It was observed that AE energy could be related to fracture energy. An experimental study was done to understand the behavior of AE energy with parameters of concrete like its strength and size. In this study, AE energy was used as a quantitative measure of size independent specific fracture energy of concrete beams and the concepts of boundary effect and local fracture energy were used to obtain size independent AE energy from which size independent fracture energy was obtained. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Bixbyite type Y2O3:Eu3+ apart from being the efficient red phosphor extensively used in trichromatic fluorescent lamps, it is a typical system one can apply Jorgensen's refined electron spin pairing theory. This can be used to explain the enhancement in Eu3+ emission intensity observed with the aliovalent substitution in the yttria host matrix. Results based on these are explained qualitatively by considering a simple configurational coordinate model. Futhermore, an insight into the different types of defects induced with the aliovalent substitution in the yttria lattice has become possible with EPR probe.
Resumo:
We present observations of the C270alpha carbon recombination line, 21 cm neutral hydrogen line and (CO)-C-12 (J = 1 --> 0) molecular line toward Cas A. A comparison of the distribution of recombination line optical depths over the face of Cas A with that of H I optical depths and molecular line emission favors the association of C270alpha regions with H I rather than molecular clouds. The association makes it possible to self-consistently determine several physical parameters of the clouds by combining the recombination line and 21 cm H I measurements.
Resumo:
Study of fatigue phenomenon in composites requires a dynamic tool which can detect and identify different failure mechanisms involved. The tool should also be capable of monitoring the cumulative damage progression on-line. Acoustic Emission Technique has been utilized in the experimental investigations on unidirectional carbon fiber reinforced plastic (CFRP) composite specimens subjected to tension-tension fatigue. Amplitude as well as frequency distribution of Acoustic Emission (AE) signals have been studied to detect and characterize different failure mechanisms. For a quantitative measure of degradation of the material with fatigue load cycles, reduction in stiffness of the specimen has been measured intermittently. Ultrasonic imaging could give the information on the changes in the interior status of the material at different stages of fatigue life.
Resumo:
Azidothymidine (AZT), which has been extensively used as an antiviral agent in the treatment of AIDS, showed strong inhibition of growth of Sp2/0 cells in vitro. AZT-treated cells showed a decrease in viability in a dose-dependent manner. AZT specifically induced typical apoptotic cell death with DNA double-strand cleavage and subsequent formation of apoptotic bodies. The induction of DNA double-strand cleavage into the oligonucleosomal ladder by AZT was protected in the presence of thymidine or uridine. An increase in endonuclease activity from nuclear extract of AZT-treated cells was observed. The enzyme activity was found to be Ca2+- and Mg2+-dependent and was inhibited by zinc acetate. A marked enhancement of PARP activity was observed in AZT-treated cells. These observations show that AZT can trigger both morphological and biochemical changes typical of apoptosis in the mouse myeloma cell line Sp2/0.
Resumo:
We report a study of the kinematics of the cometary globules in the Gum Nebula using the J = 1 yields 0 transition line of (CO-12)O. A morphological center for the system with which 60 percent of the globules are associated is identified. It is shown that the observed radial velocities of the heads of the globules are consistent with an expansion of the system. Systematic velocity gradients are present along some of the tails. The estimated expansion age and the tail stretching age are both about a few million years, suggesting a common origin for the expansion and the formation of the tails. The presence of young stars of similar ages in some of the globules points to star formation triggered by the same cause. Possible scenarios are briefly discussed.
Leak Detection In Pressure Tubes Of A Pressurized Heavy-Water Reactor By Acoustic-Emission Technique
Resumo:
Leak detection in the fuel channels is one of the challenging problems during the in-service inspection (ISI) of Pressurised Heavy Water Reactors (PHWRs). In this paper, the use of an acoustic emission (AE) technique together with AE signal analysis is described, to detect a leak that was ncountered in one (or more) of the 306 fuel channels of the Madras Atomic Power Station (PHWR), Unit I. The paper describes the problems encountered during the ISI, the experimental methods adopted and the results obtained. Results obtained using acoustic emission signal analysis are compared with those obtained from other leak detection methods used in such cases.
Resumo:
Two new line clipping algorithms, the opposite-corner algorithm and the perpendicular-distance algorithm, that are based on simple geometric observations are presented. These algorithms do not require computation of outcodes nor do they depend on the parametric representations of the lines. It is shown that the opposite-corner algorithm perform consistently better than an algorithm due to Nicholl, Lee, and Nicholl which is claimed to be better than the classic algorithm due to Cohen-Sutherland and the more recent Liang-Barsky algorithm. The pseudo-code of the opposite-corner algorithm is provided in the Appendix.
Resumo:
Photoluminescence (PL) of high quality GaN epitaxial layer grown on beta-Si3N4/Si (1 1 1) substrate using nitridation-annealing-nitridation method by plasma-assisted molecular beam epitaxy (PA-MBE) was investigated in the range of 5-300 K. Crystallinity of GaN epilayers was evaluated by high resolution X-ray diffraction (HRXRD) and surface morphology by Atomic Force Microscopy (AFM) and high resolution scanning electron microscopy (HRSEM). The temperature-dependent photoluminescence spectra showed an anomalous behaviour with an `S-like' shape of free exciton (FX) emission peaks. Distant shallow donor-acceptor pair (DAP) line peak at approximately 3.285 eV was also observed at 5 K, followed by LO replica sidebands separated by 91 meV. The activation energy of the free exciton for GaN epilayers was also evaluated to be similar to 27.8 +/- 0.7 meV from the temperature-dependent PL studies. Low carrier concentrations were observed similar to 4.5 +/- 2 x 10(17) Cm-3 by measurements and it indicates the silicon nitride layer, which not only acts as a growth buffer layer, but also effectively prevents Si diffusion from the substrate to GaN epilayers. The absence of yellow band emission at around 2.2 eV signifies the high quality of film. The tensile stress in GaN film calculated by the thermal stress model agrees very well with that derived from Raman spectroscopy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Detailed three-dimensional CFD simulations involving flow and combustion chemistry are used to study the effect of swirl induced by re-entrant piston bowl geometries on pollutant emissions from a single-cylinder diesel engine. The baseline engine configuration consists of a hemispherical piston bowl and an injector with finite sac volume. The first iteration involved using a torroidal, slightly re-entrant bowl geometry, and a sac-less injector. Pollutant emission measurements indicated a reduction in emissions with this modification. Simulations on both configurations were then conducted to understand the effect of the changes. The simulation results indicate that the selected piston bowl geometry could actually be reducing the in-cylinder swirl and turbulence and the emission reduction may be entirely due to the introduction of the sac-less injector. In-cylinder air motion was then studied in a number of combustion chamber geometries, and a geometry which produced the highest in-cylinder swirl and Turbulence Kinetic Energy (TKE) around the compression top dead centre (TDC) was identified. The optimal nature of this re-entrant piston bowl geometry is confirmed by detailed combustion simulations and emission predictions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents observations of SiO maser emission from 161 Mira variables distributed over a wide range of intrinsic parameters like spectral type, bolometric magnitude and amplitude of pulsation. The observations were made at 86.243 GHz, using the 10.4 m millimeter-wave telescope of the Raman Research Institute at Bangalore, India. These are the first observations made using this telescope. From these observations, we have established that the maser emission is restricted to Miras having mean spectral types between M6 and M10. The infrared period-luminosity relation for Mira variables is used to calculate their distances and hence estimate their maser luminosities from the observed fluxes. The maser luminosity is found to be correlated with the bolometric magnitude of the Mira variable. On an H-R diagram, the masing Mira variables are shown to lie in a region distinct from that for the non-masing ones.
Resumo:
We present a study of the growth of local, nonaxisymmetric perturbations in gravitationally coupled stars and gas in a differentially rotating galactic disk. The stars and gas are treated as two isothermal fluids of different velocity dispersions, with the stellar velocity dispersion being greater than that for the gas. We examine the physical effects of inclusion of a low-velocity dispersion component (gas) on the growth of non-axisymmetric perturbations in both stars and gas, as done for the axisymmetric case by Jog & Solomon. The amplified perturbations in stars and gas constitute trailing, material, spiral features which may be identified with the local spiral features seen in all spiral galaxies. The formulation of the two-fluid equations closely follows the one-fluid treatment by Goldreich & Lynden-Bell. The local, linearized perturbation equations in the sheared frame are solved to obtain the results for a temporary growth via swing amplification. The problem is formulated in terms of five dimensionless parameters-namely, the Q-factors for stars and gas, respectively; the gas mass fraction; the shearing rate in the galactic disk; and the length scale of perturbation. By using the observed values of these parameters, we obtain the amplifications and the pitch angles for features in stars and gas for dynamically distinct cases, as applicable for different regions of spiral galaxies. A real galaxy consisting of stars and gas may display growth of nonaxisymmetric perturbations even when it is stable against axisymmetric perturbations and/or when either fluid by itself is stable against non-axisymmetric perturbations. Due to its lower velocity dispersion, the gas exhibits a higher amplification than do the stars, and the amplified gas features are slightly more tightly wound than the stellar features. When the gas contribution is high, the stellar amplification and the range of pitch angles over which it can occur are both increased, due to the gravitational coupling between the two fluids. Thus, the two-fluid scheme can explain the origin of the broad spiral arms in the underlying old stellar populations of galaxies, as observed by Schweizer and Elmegreen & Elmegreen. The arms are predicted to be broader in gas-rich galaxies, as is indeed seen for example in M33. In the linear regime studied here, the arm contrast is shown to increase with radius in the inner Galaxy, in agreement with observations of external galaxies by Schweizer. These results follow directly due to the inclusion of gas in the problem.
Resumo:
We performed high resolution spectroscopy of the solar corona during the total solar eclipse of 22 July 2009 in two emission lines: the green line at 5303 due to Fe xiv and the red line at 6374 due to Fe x, simultaneously from Anji (latitude 30A degrees 28.1' N; longitude 119A degrees 35.4' E; elevation 890 m), China. A two-mirror coelostat with 100 cm focal length lens produced a 9.2 mm image of the Sun. The spectrograph using 140 cm focal length lens in Littrow mode and a grating with 600 lines per millimeter blazed at 2 mu m provided a dispersion of 30 m and 43 m per pixel in the fourth order around the green line and third order around the red line, respectively. Two Peltier cooled 1k x 1k CCD cameras, with a pixel size of 13 mu m square and 14-bit readout at 10 MHz operated in frame transfer mode, were used to obtain the time sequence spectra in two emission lines simultaneously. The duration of totality was 341 s, but we could get spectra for 270 s after a trial exposure at an interval of 5 s. We report here on the detection of intensity, velocity, and line width oscillations with periodicity in the range of 25 -50 s. These oscillations can be interpreted in terms of the presence of fast magnetoacoustic waves or torsional Alfv,n waves. The intensity ratios of green to red emission lines indicate the temperature of the corona to be 1.65 MK in the equatorial region and 1.40 MK in the polar region, relatively higher than the expected temperature during the low activity period. The width variation of the emission lines in different coronal structures suggests different physical conditions in different structures.
Resumo:
The irreversibility line for H?c in a single crystal specimen of Bi2Sr2CaCu2O8+? (Bi2212) has been determined via vanishing of hysteresis in isothermal dc magnetization measurements. The hysteresis loops (H?c) in Bi2212 appear to show signatures of two-component magnetic response in several temperature regions where the temperature dependence of irreversibility field charges sharply. It is proposed that the observed behavior may be a consequence of existence of weak links of varying strength in Bi2212
Resumo:
We present observations of low-frequency recombination lines of carbon toward Cas A near 34.5 MHz (n similar to 575) using the Gauribidanur radio telescope and near 560 MHz (n similar to 225) and 770 MHz (n similar to 205) using the NRAO 140 foot (43 m) telescope in Greenbank. We also present high angular resolution (1') observations of the C270 alpha line near 332 MHz using the Very Large Array in B-configuration. A high signal-to-noise ratio spectrum is obtained at 34.5 MHz, which clearly shows a Voigt profile with distinct Lorentzian wings, resulting from significant pressure and radiation broadening at such high quantum numbers. The emission lines detected near 332, 550, and 770 MHz, on the other hand, are narrow and essentially Doppler-broadened. The measured Lorentzian width at 34.5 MHz constrains the allowed combinations of radiation temperature, electron density, and electron temperature in the line-forming region. Radiation broadening at 34.5 MHz places a lower limit of 115 pc on the separation between Cas A and the line-forming clouds. Modeling the variation in the integrated line-to-continuum ratio with frequency indicates that the region is likely to be associated with the cold atomic hydrogen component of the interstellar medium, and the physical properties of this region are likely to be T-e = 75 K, n(e) = 0.02 cm(-3), T-R100 = 3200 K, and n(H) T-e = 10,000 cm(-3) K. Comparison of the distribution of the C270 alpha recombination line emission across Cas A with that of (CO)-C-12 and H I also supports the above conclusion.