155 resultados para Sphere
Resumo:
Conservation of natural resources through sustainable ecosystem management and development is the key to our secured future. The management of ecosystem involves inventorying and monitoring, and applying integrated technologies, methodologies and interdisciplinary approaches for its conservation. Hence, now it is even more critical than ever before for the humans to be environmentally literate. To realise this vision, both ecological and environmental education must become a fundamental part of the education system at all levels of education. Currently, it is even more critical than ever before for the humankind as a whole to have a clear understanding of environmental concerns and to follow sustainable development practices. The degradation of our environment is linked to continuing problems of pollution, loss of forest, solid waste disposal, and issues related to economic productivity and national as well as ecological security. Environmental management has gained momentum in the recent years with the initiatives focussing on managing environmental hazards and preventing possible disasters. Environmental issues make better sense, when one can understand them in the context of one’s own cognitive sphere. Environmental education focusing on real-world contexts and issues often begins close to home, encouraging learners to understand and forge connections with their immediate surroundings. The awareness, knowledge, and skills needed for these local connections and understandings provide a base for moving out into larger systems, broader issues, and a more sophisticated comprehension of causes, connections, and consequences. Environmental Education Programme at CES in collaboration with Karnataka Environment Research Foundation (KERF) referred as ‘Know your Ecosystem’ focuses on the importance of investigating the ecosystems within the context of human influences, incorporating an examination of ecology, economics, culture, political structure, and social equity as well as natural processes and systems. The ultimate goal of environment education is to develop an environmentally literate public. It needs to address the connection between our conception and practice of education and our relationship as human cultures to life-sustaining ecological systems. For each environmental issue there are many perspectives and much uncertainty. Environmental education cultivates the ability to recognise uncertainty, envision alternative scenarios, and adapt to changing conditions and information. These knowledge, skills, and mindset translate into a citizenry who is better equipped to address its common problems and take advantage of opportunities, whether environmental concerns are involved or not.
Resumo:
Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), non-orthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the OAF and NAF protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. In the two-relay case, the variable-NSDF protocol is shown to improve on the DMT of the best previously-known static protocol for higher values of multiplexing gain. Our results also establish that the fixed-NSDF protocol has a better DMT than the NAF protocol for any number of relays.
Resumo:
We show that under gravity the effective masses for neutrino and antineutrino are different which opens a possible window of neutrino-antineutrino oscillation even if the rest masses of the corresponding eigenstates are same. This is due to CPT violation and possible to demonstrate if the neutrino mass eigenstates are expressed as a combination of neutrino and antineutrino eigenstates, as of the neutral kaon system, with the plausible breaking of lepton number conservation. In early universe, in presence of various lepton number violating processes, this oscillation might lead to neutrino-antineutrino asymmetry which resulted baryogenesis from the B-L symmetry by electro-weak sphaleron processes. On the other hand, for Majorana neutrinos, this oscillation is expected to affect the inner edge of neutrino dominated accretion disks around a compact object by influencing the neutrino sphere which controls the accretion dynamics, and then the related type-II supernova evolution and the r-process nucleosynthesis.
Resumo:
Conservation of natural resources through sustainable ecosystem management and development is the key to our secured future. The management of ecosystem involves inventorying and monitoring, and applying integrated technologies, methodologies and interdisciplinary approaches for its conservation. Hence, now it is even more critical than ever before for the humans to be environmentally literate. To realise this vision, both ecological and environmental education must become a fundamental part of the education system at all levels of education. Currently, it is even more critical than ever before for the humankind as a whole to have a clear understanding of environmental concerns and to follow sustainable development practices. The degradation of our environment is linked to continuing problems of pollution, loss of forest, solid waste disposal, and issues related to economic productivity and national as well as ecological security. Environmental management has gained momentum in the recent years with the initiatives focussing on managing environmental hazards and preventing possible disasters. Environmental issues make better sense, when one can understand them in the context of one’s own cognitive sphere. Environmental education focusing on real-world contexts and issues often begins close to home, encouraging learners to understand and forge connections with their immediate surroundings. The awareness, knowledge, and skills needed for these local connections and understandings provide a base for moving out into larger systems, broader issues, and a more sophisticated comprehension of causes, connections, and consequences. Environmental Education Programme at CES in collaboration with Karnataka Environment Research Foundation (KERF) referred as ‘Know your Ecosystem’ focuses on the importance of investigating the ecosystems within the context of human influences, incorporating an examination of ecology, economics, culture, political structure, and social equity as well as natural processes and systems. The ultimate goal of environment education is to develop an environmentally literate public. It needs to address the connection between our conception and practice of education and our relationship as human cultures to life-sustaining ecological systems. For each environmental issue there are many perspectives and much uncertainty. Environmental education cultivates the ability to recognise uncertainty, envision alternative scenarios, and adapt to changing conditions and information. These knowledge, skills, and mindset translate into a citizenry who is better equipped to address its common problems and take advantage of opportunities, whether environmental concerns are involved or not.
Resumo:
The transmission loss (TL) performance of spherical chambers having single inlet and multiple outlet is obtained analytically through modal expansion of acoustic field inside the spherical cavity in terms of the spherical Bessel functions and Legendre polynomials. The uniform piston driven model based upon the impedance [Z] matrix is used to characterize the multi-port spherical chamber. It is shown analytically that the [Z] parameters are independent of the azimuthal angle (phi) due to the axisymmetric shape of the sphere; rather, they depend only upon the polar angle (theta) and radius of the chamber R(0). Thus, the effects of relative polar angular location of the ports and number of outlet ports are investigated. The analytical results are shown to be in good agreement with the 3D FEA results, thereby validating the procedure suggested in this work.
Resumo:
Atomistic molecular dynamics simulations have been carried out to reveal the characteristic features of ethylenediamine (EDA) cored protonated (corresponding to neutral pH) poly amido amine (PAMAM) dendrimers of generation 3 (G3) and 4 (G4) that are functionalized with single strand DNAs (ssDNAs). The four ssDNA strands that are attached via an alkythiolate [-S(CH(2))(6)-] linker molecule to the free amine groups on the surface of the PAMAM dendrimers are observed to undergo a rapid conformational change during the 25 ns long simulation period. From the RMSD values of ssDNAs, we find relative stability in the case of purine rich (having more adenine and guanine) ssDNA strands than pyrimidine rich (thymine and cytosine) ssDNA strands. The degree of wrapping of ssDNA strands on the dendrimer molecule was found to be influenced by the charge ratio of DNA and the dendrimer. As the G4 dendrimer contains relatively more positive charge than G3 dendrimer, we observe extensive wrapping of ssDNAs on the G4 dendrimer than G3 dendrimer. This might indicate that DNA functionalized G3 dendrimer is more suitable to construct higher order nanostructures. The linker molecule was also found to undergo drastic conformational change during the simulation. During nanosecond long simulation some portion of the linker molecule was found to be lying nearly flat on the surface of the dendrimer molecule. The ssDNA strands along with the linkers are seen to penetrate the surface of the dendrimer molecule and approach closer to the center of the dendrimer indicating the soft sphere nature of the dendrimer molecule. The effective radius of DNA-functionalized dendrimer nanoparticles was found to be independent of base composition of ssDNAs and was observed to be around 19.5 angstrom and 22.4 angstrom when we used G3 and G4 PAMAM dendrimers as the core of the nanoparticle respectively. The observed effective radius of DNA-functionalized dendrimer molecules apparently indicates the significant shrinkage in the structure that has taken place in dendrimer, linker and DNA strands. As a whole our results describe the characteristic features of DNA-functionalized dendrimer nanoparticles and can be used as strong inputs to design effectively the DNA-dendrimer nanoparticle self-assembly for their active biological applications.
Resumo:
Overexpression of Notch receptors and ligands has been associated with various cancers and developmental disorders, making Notch a potential therapeutic target. Here, we report characterization of Notch1 monoclonal antibodies (mAb) with therapeutic potential. The mAbs generated against epidermal growth factor (EGF) repeats 11 to 15 inhibited binding of Jagged1 and Delta-like4 and consequently, signaling in a dose-dependent manner, the antibodies against EGF repeats 11 to 12 being more effective than those against repeats 13 to 15. These data emphasize the role of EGF repeats 11 to 12 in ligand binding. One of the mAbs, 602.101, which specifically recognizes Notch1, inhibited ligand-dependent expression of downstream target genes of Notch such as HES-1, HES-5, and HEY-L in the breast cancer cell line MDA-MB-231. The mAb also decreased cell proliferation and induced apoptotic cell death. Furthermore, exposure to this antibody reduced CD44(Hi)/CD24(Low) subpopulation in MDA-MB-231 cells, suggesting a decrease in the cancer stem-like cell subpopulation. This was confirmed by showing that exposure to the antibody decreased the primary, secondary, and tertiary mammosphere formation efficiency of the cells. Interestingly, effect of the antibody on the putative stem-like cells appeared to be irreversible, because the mammosphere-forming efficiency could not be salvaged even after antibody removal during the secondary sphere formation. The antibody also modulated expression of genes associated with stemness and epithelial-mesenchymal transition. Thus, targeting individual Notch receptors by specific mAbs is a potential therapeutic strategy to reduce the potential breast cancer stem-like cell subpopulation. Mol Cancer Ther; 11(1); 77-86. (C) 2011 AACR.
Resumo:
The γ-brass structure was for a long time regarded as a modified bcc structure. It is more accurately described in terms of a 26-atom cluster consisting of four interpenetrating icosahedral clusters. An alternative description in terms of a 38-atom cluster is also illuminating. We discuss the γ-brass structure in terms of the packing of spheres and the packing of ‘almost regular’ tetrahedra and demonstrate a close relationship to the helical sphere packings investigated by Boerdijk, who considered the configuration of touching spheres centred at the vertices of a Coxeter helix, and extended it by adding an extra layer of spheres. Adding a further layer of spheres gives a rod-like structure in which every sphere of the original helix is surrounded by twelve others, configured as a somewhat distorted icosahedron. Thus each tetrahedron of the initial structure is then shared by four icosahedra. This 26-sphere cluster is a slightly distorted form of the 26-atom γ-brass cluster.
Resumo:
We study the dynamics of a spherical steel ball falling freely through a solution of entangled wormlike-micelles. If the sphere diameter is larger than a threshold value, the settling velocity shows repeated short oscillatory bursts separated by long periods of relative quiescence. We propose a model incorporating the interplay of settling-induced flow, viscoelastic stress and, as in M. E. Cates, D. A. Head and A. Ajdari, Phys. Rev. E, 2002, 66, 025202(R) and A. Aradian and M. E. Cates, Phys. Rev. E, 2006, 73, 041508, a slow structural variable for which our experiments offer independent evidence.
Resumo:
Emerging evidence suggests that cancers arise in stem/progenitor cells. Yet, the requirements for transformation of these primitive cells remains poorly understood. In this study, we have exploited the `mammosphere' system that selects for primitive mammary stem/progenitor cells to explore their potential and requirements for transformation. Introduction of Simian Virus 40 Early Region and hTERT into mammosphere-derived cells led to the generation of NBLE, an immortalized mammary epithelial cell line. The NBLEs largely comprised of bi-potent progenitors with long-term self-renewal and multi-lineage differentiation potential. Clonal and karyotype analyses revealed the existence of heterogeneous population within NBLEs with varied proliferation, differentiation and sphere-forming potential. Significantly, injection of NBLEs into immunocompromised mice resulted in the generation of invasive ductal adenocarcinomas. Further, these cells harbored a sub-population of CD44(+)/CD24(-) fraction that alone had sphere- and tumor-initiating potential and resembled the breast cancer stem cell gene signature. Interestingly, prolonged in vitro culturing led to their further enrichment. The NBLE cells also showed increased expression of stemness and epithelial to mesenchymal transition markers, deregulated self-renewal pathways, activated DNA-damage response and cancer-associated chromosomal aberrations-all of which are likely to have contributed to their tumorigenic transformation. Thus, unlike previous in vitro transformation studies that used adherent, more differentiated human mammary epithelial cells our study demonstrates that the mammosphere-derived, less-differentiated cells undergo tumorigenic conversion with only two genetic elements, without requiring oncogenic Ras. Moreover, the striking phenotypic and molecular resemblance of the NBLE-generated tumors with naturally arising breast adenocarcinomas supports the notion of a primitive breast cell as the origin for this subtype of breast cancer. Finally, the NBLEs represent a heterogeneous population of cells with striking plasticity, capable of differentiation, self-renewal and tumorigenicity, thus offering a unique model system to study the molecular mechanisms involved with these processes. Oncogene (2012) 31, 1896-1909; doi:10.1038/onc.2011.378; published online 29 August 2011
Resumo:
The fluorescence quenching studies of carboxamide namely (E)-N-(3-Chlorophenyl)-2-(3,4,5-trimethoxybenzylideneamino)-4,5,6,7 tetrahydrobenzob]thiophene-3-carboxamide ENCTTTC] by aniline and carbon tetrachloride in six different solvents namely toluene, cyclohexane, n-hexane, n-heptane, n-decane and n-pentane have been carried out at room temperature with a view to understand the quenching mechanisms. The Stern-Volmer (S-V) plots have been found to be nonlinear with a positive deviation for all the solvents studied. In order to interpret these results we have invoked the ground state complex formation and sphere of action static quenching models. Using these models various quenching rate parameters have been determined. The magnitudes of these parameters suggest that sphere of action static quenching model agrees well with the experimental results. Hence the positive deviation is attributed to the static and dynamic quenching. Further, with the use of Finite Sink approximation model, it was possible to check these bimolecular reactions as diffusion-limited and to estimate independently distance parameter R' and mutual diffusion coefficient D. Finally an effort has been made to correlate the values of R' and D with the values of the encounter distance R and the mutual coefficient D determined using the Edward's empirical relation and Stokes Einstein relation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Chemical reactions inside cells are typically subject to the effects both of the cell's confining surfaces and of the viscoelastic behavior of its contents. In this paper, we show how the outcome of one particular reaction of relevance to cellular biochemistry - the diffusion-limited cyclization of long chain polymers - is influenced by such confinement and crowding effects. More specifically, starting from the Rouse model of polymer dynamics, and invoking the Wilemski-Fixman approximation, we determine the scaling relationship between the mean closure time t(c) of a flexible chain (no excluded volume or hydrodynamic interactions) and the length N of its contour under the following separate conditions: (a) confinement of the chain to a sphere of radius d and (b) modulation of its dynamics by colored Gaussian noise. Among other results, we find that in case (a) when d is much smaller than the size of the chain, t(c) similar to Nd-2, and that in case (b), t(c) similar to N-2/(2 (2H)), H being a number between 1/2 and 1 that characterizes the decay of the noise correlations. H is not known a priori, but values of about 0.7 have been used in the successful characterization of protein conformational dynamics. At this value of H (selected for purposes of illustration), t(c) similar to N-3.4, the high scaling exponent reflecting the slow relaxation of the chain in a viscoelastic medium. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4729041]
Resumo:
Molecular dynamic simulations of a strongly inhomogeneous system reveals that a single-component soft-sphere fluid can behave as a fragile glass former due to confinement. The self-intermediate scattering function, F-s(k,t), of a Lennard-Jones fluid confined in slit-shaped pores, which can accomodate two to four fluid layers, exhibits a two-step relaxation at moderate temperatures. The mean-squared displacement data are found to follow time-temperature superposition and both the self-diffusivity and late a relaxation times exhibit power-law divergences as the fluid is cooled. The system possesses a crossover temperature and follows the scalings of mode coupling theory for the glass transition. The temperature dependence of the self-diffusivity can be expressed using the Vogel-Fulcher-Tammann equation, and estimates of the fragility index of the system indicates a fragile glass former. At lower temperatures, signatures of additional relaxation processes are observed in the various dynamical quantities with a three-step relaxation observed in the F-s(k,t).
Resumo:
Interpenetrating polymer networks (IPNs) of trimethylol propane triacrylate (TMPTA) and 1,6-hexane diol diacrylate (HDDA) at different weight ratios were synthesized. Temperature modulated differential scanning calorimetry (TMDSC) was used to determine whether the formation resulted in a copolymer or interpenetrating polymer network (IPN). These polymers are used as binders for microstereolithography (MSL) based ceramic microfabrication. The kinetics of thermal degradation of these polymers are important to optimize the debinding process for fabricating 3D shaped ceramic objects by MSL based rapid prototyping technique. Therefore, thermal and thermo-oxidative degradation of these IPNs have been studied by dynamic and isothermal thermogravimetry (TGA). Non-isothermal model-free kinetic methods have been adopted (isoconversional differential and KAS) to calculate the apparent activation energy (E a) as a function of conversion (α) in N 2 and air. The degradation of these polymers in N 2 atmosphere occurs via two mechanisms. Chain end scission plays a dominant role at lower temperature while the kinetics is governed by random chain scission at higher temperature. Oxidative degradation shows multiple degradation steps having higher activation energy than in N 2. Isothermal degradation was also carried out to predict the reaction model which is found to be decelerating. It was shown that the degradation of PTMPTA follows a contracting sphere reaction model in N 2. However, as the HDDA content increases in the IPNs, the degradation reaction follows Avrami-Erofeev model and diffusion governed mechanisms. The intermediate IPN compositions show both type of mechanism. Based on the above study, debinding strategy for MSL based microfabricated ceramic structure has been proposed. © 2012 Elsevier B.V.
Resumo:
Precision inspection of manufactured components having multiple complex surfaces and variable tolerance definition is an involved, complex and time-consuming function. In routine practice, a jig is used to present the part in a known reference frame to carry out the inspection process. Jigs involve both time and cost in their development, manufacture and use. This paper describes 'as is where is inspection' (AIWIN), a new automated inspection technique that accelerates the inspection process by carrying out a fast registration procedure and establishing a quick correspondence between the part to inspect and its CAD geometry. The main challenge in doing away with a jig is that the inspection reference frame could be far removed from the CAD frame. Traditional techniques based on iterative closest point (ICP) or Newton methods require either a large number of iterations for convergence or fail in such a situation. A two-step coarse registration process is proposed to provide a good initial guess for a modified ICP algorithm developed earlier (Ravishankar et al., Int J Adv Manuf Technol 46(1-4):227-236, 2010). The first step uses a calibrated sphere for local hard registration and fixing the translation error. This transformation locates the centre for the sphere in the CAD frame. In the second step, the inverse transformation (involving pure rotation about multiple axes) required to align the inspection points measured on the manufactured part with the CAD point dataset of the model is determined and enforced. This completes the coarse registration enabling fast convergence of the modified ICP algorithm. The new technique has been implemented on complex freeform machined components and the inspection results clearly show that the process is precise and reliable with rapid convergence. © 2011 Springer-Verlag London Limited.